
NIST Special Publication 800-130

A Framework for Designing
Cryptographic Key Management

Systems

Elaine Barker
Miles Smid

Dennis Branstad
Santosh Chokhani

C O M P U T E R S E C U R I T Y

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.SP.800-130

NIST Special Publication 800-130

A Framework for Designing
Cryptographic Key Management

Systems

Elaine Barker
Computer Security Division

Information Technology Laboratory

Miles Smid
Orion Security Solutions

Silver, Spring, MD

Dennis Branstad
NIST Consultant

Austin, TX

Santosh Chokhani
Cygnacom

McLean, VA

August 2013

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.SP.800-130

SP 800-130 August 2013

ii

Authority
This publication has been developed by NIST to further its statutory responsibilities
under the Federal Information Security Management Act (FISMA), Public Law (P.L.)
107-347. NIST is responsible for developing information security standards and
guidelines, including minimum requirements for Federal information systems, but such
standards and guidelines shall not apply to national security systems without the express
approval of appropriate Federal officials exercising policy authority over such systems.
This guideline is consistent with the requirements of the Office of Management and
Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as
analyzed in Circular A-130, Appendix IV: Analysis of Key Sections. Supplemental
information is provided in Circular A-130, Appendix III, Security of Federal Automated
Information Resources.

Nothing in this publication should be taken to contradict the standards and guidelines
made mandatory and binding on Federal agencies by the Secretary of Commerce under
statutory authority. Nor should these guidelines be interpreted as altering or superseding
the existing authorities of the Secretary of Commerce, Director of the OMB, or any other
Federal official. This publication may be used by nongovernmental organizations on a
voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-130
Natl. Inst. Stand. Technol. Spec. Publ. 800-130, 112 pages (August 2013)

CODEN: NSPUE2

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: ckmsdesignframework@nist.gov

Certain commercial entities, equipment, or materials may be identified in this document in order to
describe an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by Federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines,
and procedures, where they exist, remain operative. For planning and transition purposes, Federal
agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and
provide feedback to NIST. All NIST Computer Security Division publications, other than the ones
noted above, are available at http://csrc.nist.gov/publications.

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.SP.800-130

SP 800-130 August 2013

iii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing
technical leadership for the Nation’s measurement and standards infrastructure. ITL
develops tests, test methods, reference data, proof of concept implementations, and
technical analyses to advance the development and productive use of information
technology. ITL’s responsibilities include the development of management,
administrative, technical, and physical standards and guidelines for the cost-effective
security and privacy of other than national security-related information in Federal
information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative
activities with industry, government, and academic organizations.

Abstract

This Framework for Designing Cryptographic Key Management Systems (CKMS)
contains topics that should be considered by a CKMS designer when developing a CKMS
design specification. For each topic, there are one or more documentation requirements
that need to be addressed by the design specification. Thus, any CKMS that addresses
each of these requirements would have a design specification that is compliant with this
Framework.

Keywords

access control; confidentiality; cryptographic key management system; cryptographic
keys; framework; integrity; key management policies; key metadata; source
authentication.

Acknowledgements

The National Institute of Standards and Technology (NIST) gratefully acknowledges and
appreciates contributions by all those who participated in the creation, review, and
publication of this Framework. NIST also thanks the many contributions by the public
and private sectors whose thoughtful and constructive comments improved the quality
and usefulness of this publication. Many useful suggestions that were made during the
workshops held on CKMS at NIST in 2009, 2010, and 2012 have been incorporated in
this document.

SP 800-130 August 2013

iv

Contents

1. Introduction .. 1

1.1 Scope of this Framework .. 3
1.2 Audience ... 3
1.3 Organization ... 3

2. Framework Basics .. 4
2.1 Rationale for Cryptographic Key Management .. 4
2.2 Keys, Metadata, Trusted Associations, and Bindings .. 6
2.3 CKMS Applications ... 8
2.4 Framework Topics and Requirements .. 9
2.5 CKMS Design... 9
2.6 CKMS Profiles ... 11
2.7 CKMS Framework and Derived Profile ... 11
2.8 Differences between a Framework and a Profile .. 12
2.9 Example of a Distributed CKMS Supporting a Secure E-Mail Application 12
2.10 CKMS Framework Components and Devices.. 13

3. Goals ... 14
3.1 Providing Key Management to Networks, Applications, and Users 14
3.2 Maximize the Use of COTS in a CKMS .. 15
3.3 Conformance to Standards.. 16
3.4 Ease-of-use ... 16

3.4.1 Accommodate User Ability and Preferences ... 17
3.4.2 Design Principles of the User Interface.. 17

3.5 Performance and Scalability ... 17
4. Security Policies ... 18

4.1 Information Management Policy .. 19
4.2 Information Security Policy .. 19
4.3 CKMS Security Policy ... 20
4.4 Other Related Security Policies .. 21
4.5 Interrelationships among Policies ... 22
4.6 Personal Accountability .. 22
4.7 Anonymity, Unlinkability, and Unobservability .. 22

4.7.1 Anonymity .. 22
4.7.2 Unlinkability... 23
4.7.3 Unobservability .. 23

4.8 Laws, Rules, and Regulations ... 23
4.9 Security Domains ... 23

4.9.1 Conditions for Data Exchange ... 24
4.9.2 Assurance of Protection ... 24
4.9.3 Equivalence of Domain Security Policies .. 26
4.9.4 Third-Party Sharing .. 26
4.9.5 Multi-level Security Domains .. 27

SP 800-130 August 2013

v

4.9.6 Upgrading and Downgrading ... 28
4.9.7 Changing Domain Security Policies .. 28

5. Roles and Responsibilities ... 29
6. Cryptographic Keys and Metadata ... 31

6.1 Key Types ... 31
6.2 Key Metadata .. 32

6.2.1 Metadata Elements ... 32
6.2.2 Required Key and Metadata Information ... 38

6.3 Key Lifecycle States and Transitions ... 39
6.4 Key and Metadata Management Functions .. 39

6.4.1 Generate Key .. 40
6.4.2 Register Owner ... 41
6.4.3 Activate Key ... 41
6.4.4 Deactivate Key ... 41
6.4.5 Revoke Key .. 42
6.4.6 Suspend and Re-Activate a Key ... 42
6.4.7 Renew a Public Key ... 43
6.4.8 Key Derivation or Key Update... 44
6.4.9 Destroy Key and Metadata ... 44
6.4.10 Associate a Key with its Metadata ... 45
6.4.11 Modify Metadata .. 45
6.4.12 Delete Metadata.. 45
6.4.13 List Key Metadata .. 45
6.4.14 Store Operational Key and Metadata ... 46
6.4.15 Backup of a Key and its Metadata ... 46
6.4.16 Archive Key and/or Metadata .. 46
6.4.17 Recover Key and/or Metadata .. 47
6.4.18 Establish Key.. 47
6.4.19 Enter a Key and Associated Metadata into a Cryptographic Module 48
6.4.20 Output a Key and Associated Metadata from a Cryptographic Module 48
6.4.21 Validate Public Key Domain Parameters ... 48
6.4.22 Validate Public Key ... 49
6.4.23 Validate Public Key Certification Path .. 49
6.4.24 Validate Symmetric Key .. 49
6.4.25 Validate Private Key (or Key Pair) .. 49
6.4.26 Validate the Possession of a Private Key ... 50
6.4.27 Perform a Cryptographic Function using the Key 50
6.4.28 Manage the Trust Anchor Store ... 50

6.5 Cryptographic Key and/or Metadata Security: In Storage 51
6.6 Cryptographic Key and Metadata Security: During Key Establishment 52

6.6.1 Key Transport ... 52
6.6.2 Key Agreement .. 53
6.6.3 Key Confirmation ... 54
6.6.4 Key Establishment Protocols ... 54

6.7 Restricting Access to Key and Metadata Management Functions 54

SP 800-130 August 2013

vi

6.7.1 The Access Control System (ACS) .. 55
6.7.2 Restricting Cryptographic-Module Entry and Output of Plaintext Keys 58
6.7.3 Controlling Human Input ... 58
6.7.4 Multiparty Control.. 58
6.7.5 Key Splitting .. 59

6.8 Compromise Recovery ... 59
6.8.1 Key Compromise.. 60
6.8.2 Metadata Compromise ... 61
6.8.3 Key and Metadata Revocation ... 62
6.8.4 Cryptographic Module Compromise .. 62
6.8.5 Computer System Compromise Recovery ... 63
6.8.6 Network Security Controls and Compromise Recovery 64
6.8.7 Personnel Security Compromise Recovery .. 66
6.8.8 Physical Security Compromise Recovery .. 66

7. Interoperability and Transitioning .. 67
8. Security Controls .. 69

8.1 Physical Security Controls.. 69
8.2 Operating System and Device Security Controls ... 70

8.2.1 Operating System Security ... 70
8.2.2 Individual CKMS Device Security .. 72
8.2.3 Malware Protection .. 72
8.2.4 Auditing and Remote Monitoring .. 73

8.3 Network Security Control Mechanisms ... 74
8.4 Cryptographic Module Controls ... 75

9. Testing and System Assurances ... 76
9.1 Vendor Testing ... 77
9.2 Third-Party Testing... 77
9.3 Interoperability Testing .. 77
9.4 Self-Testing .. 78
9.5 Scalability Testing .. 78
9.6 Functional Testing and Security Testing .. 78
9.7 Environmental Testing ... 79
9.8 Development, Delivery, and Maintenance Assurances .. 79

9.8.1 Configuration Management.. 79
9.8.2 Secure Delivery .. 80
9.8.3 Development and Maintenance Environmental Security 80
9.8.4 Flaw Remediation Capabilities .. 81

10. Disaster Recovery ... 81
10.1 Facility Damage .. 81
10.2 Utility Service Outage .. 82
10.3 Communication and Computation Outage ... 82
10.4 System Hardware Failure ... 82
10.5 System Software Failure ... 83
10.6 Cryptographic Module Failure ... 84

SP 800-130 August 2013

vii

10.7 Corruption of Keys and Metadata .. 84
11. Security Assessment ... 85

11.1 Full Security Assessment.. 85
11.1.1 Review of Third-Party Validations .. 85
11.1.2 Architectural Review of System Design .. 86
11.1.3 Functional and Security Testing ... 86
11.1.4 Penetration Testing ... 87

11.2 Periodic Security Review ... 87
11.3 Incremental Security Assessment ... 87
11.4 Security Maintenance ... 88

12. Technological Challenges .. 88
Appendix A: References ... 91
Appendix B: Glossary of Terms ... 103
Appendix C: Acronyms .. 111

Figures

Figure 1: The Trusted Association and Supporting Processes.. 8
Figure 2: Framework of Topics and Requirements .. 9
Figure 3: The CKMS Design Process for Framework Conformance 10
Figure 4: Relationship of CKMS Framework and Sector Profile(s)................................. 11
Figure 5: Example CKMS Overview .. 12
Figure 6: Example of a Secure Email Application ... 13
Figure 7: Related Security Policies ... 19
Figure 8: Protection Assurances between Security Domains ... 25
Figure 9: Multi-level Security Domain ... 27
Figure 10: Management Function Access Control ... 56
Figure 11: Sample Key Management Function Control Logic ... 57

Tables

Table 1: Key Types ... 31

SP 800-130 August 2013

1

1. Introduction
This Framework for Designing Cryptographic Key Management Systems (CKMS1) is a
description of the topics to be considered and the documentation requirements
(henceforth referred to as requirements) to be addressed when designing a CKMS. The
CKMS designer satisfies the requirements by selecting the policies, procedures,
components (hardware, software, and firmware), and devices (groups of components) to
be incorporated into the CKMS, and then specifying how these items are employed to
meet the requirements of this Framework.

A CKMS consists of policies, procedures, components and devices that are used to
protect, manage and distribute cryptographic keys and certain specific information, called
(associated) metadata herein. A CKMS includes all devices or sub-systems that can
access an unencrypted key or its metadata. Encrypted keys and their cryptographically
protected (bound) metadata can be handled by computers and transmitted through
communications systems and stored in media that are not considered to be part of a
CKMS.

This CKMS Framework provides design documentation requirements for any CKMS. In
other words, it describes what needs to be documented in the CKMS design. The goal of
the Framework is to guide the CKMS designer in creating a complete uniform
specification of the CKMS that can be used to build, procure, and evaluate the desired
CKMS.

This Framework offers the following advantages:

a) It helps define the CKMS design task by requiring the specification of significant
CKMS capabilities,

b) It encourages CKMS designers to consider the factors needed in a comprehensive
CKMS,

c) It encourages CKMS designers to consider factors and mechanisms that, if
properly addressed, can provide security to the system,

d) It can be used when logically comparing different compliant CKMS systems and
their capabilities,

e) It aids in performing a security assessment by requiring the specification of
implemented and supported CKMS capabilities, and

f) It forms the basis for a U.S. Federal CKMS Profile.

NIST Standards and Special Publications are referenced in this Framework as examples
only. This Framework is intended to be general enough to encompass any reasonably
complete and well-designed CKMS.

1 CKMS can be either singular or plural in this document and should be read as such.

SP 800-130 August 2013

2

This Framework is not intended to be a CKMS design. That task is left to the CKMS
designers. Rather, the Framework provides specification requirements using lists of
options that the designers may choose to incorporate in their design.

This Framework specifies documentation requirements, not security requirements. It does
not mandate particular security features. The requirements of this Framework are placed
on the CKMS design documentation. The Framework aids the designer by providing the
essential implementation choices that form the basis of a good CKMS design. The
specific choices that ensure a secure CKMS are left to the designer or to other documents,
such as security profiles that are based on this Framework.

This Framework does not mandate requirements for the protection of the information
belonging to a given public or private sector (e.g., the U.S. Government, the financial
industry, or health care services). It is anticipated that sectors will either develop their
own profiles, or they will adopt the profiles of other sectors that fulfill their own
requirements.

Requirements for conformance to this Framework are indicated by a “shall” statement.
Recommendations are indicated by the use of “should”, but are not requirements for
compliance with this Framework. The words “must” or “need(s) to” convey assumptions
upon which this Framework is based, but do not constitute a specific requirement on the
CKMS design documentation. In this Framework, “FR:i.j” indicates the jth Framework
Requirement in Section i.

FR:1.1 A conformant CKMS design shall meet all “shall” requirements of the
Framework.

Since the requirements in this Framework are documentation requirements, it may be
adequate to address a requirement by stating that the feature specified in the requirement
is not implemented in the CKMS. In many requirements, the words “if, how, where, and
under what circumstances” may appear. The “if” indicates a conditional requirement. If
the answer to the “if” question is “no” then the designer is expected to address the
requirement by indicating why the condition does not apply. If the answer to the “if”
question is “yes”, then the designer is expected to address the requirement by providing
the information levied by the requirement. The “how” response should address how the
requirement is met (i.e., how it will be implemented, enforced, and used). The “where”
response should address where (logically in the system) the implementing mechanism is
located. Finally, the “under what circumstances” response addresses the conditions that
must apply before the mechanism is used.

A CKMS design that adequately addresses, specifies, and satisfies all the requirements
specified herein can be considered as conforming to, and complying with, this
Framework. A conformant CKMS design can be compared to another conformant CKMS
design by examining the design specifications meeting each requirement.

SP 800-130 August 2013

3

1.1 Scope of this Framework
A CKMS will be a part of a larger information system that executes information
processing applications. While the CKMS supports these applications by providing
cryptographic key management services, the particular applications or particular classes
of applications are beyond the scope of this Framework.

Some introductory material is provided to describe the Framework topics and to justify
the requirements; however, this Framework assumes that the reader has a working
knowledge of the principles of key management or is able to find that information
elsewhere (e.g., in [SP 800-57-part1]). Appendix A contains a list of references that are
useful in understanding cryptography and cryptographic key management and their
application to information security.

1.2 Audience
This Framework is primarily intended for CKMS designers. However, it may also be
used by anyone interested in a Cryptographic Key Management System design and
related design specifications. It is anticipated that CKMS security analysts, procurement
officials, implementers, integrators, operators, and responsible managers would be
interested in the CKMS design specifications and products conforming to this
Framework.

CKMS designers are expected to use this Framework as a checklist for addressing all the
topics covered, for considering all the aspects of a comprehensive CKMS, for selecting
those policies, components, and devices to be included in a CKMS, for specifying all the
decisions made in the design, and for documenting the decisions with detailed
specifications and justifications. The resulting design documentation should be adequate
for implementers to create the product, for integrators to incorporate the product in other
products or sub-systems, and for procurement officials to understand, evaluate, and
compare the product with others having similar characteristics.

1.3 Organization
Section 1 Introduction provides an introduction to the Key Management Framework
and the motivation behind it.

Section 2 Framework Basics covers basic concepts of this Framework and provides an
overview of the Framework.

Section 3 Goals defines the goals of a robust CKMS.

Section 4 Security Policies discusses the structure, typical contents, and need for
information management, information security, CKMS security, and other related
security policies.

Section 5 Roles and Responsibilities presents the roles and responsibilities that support
a CKMS.

SP 800-130 August 2013

4

Section 6 Cryptographic Keys and Metadata covers the most critical elements of a
CKMS: keys and metadata, by enumerating and defining possible key types; key
metadata; and key and metadata management functions, along with access control
considerations, security issues and recovery mechanisms.

Section 7 Interoperability and Transitioning considers the need for interoperability
and the ability to easily make transitions in CKMS capabilities in order to accommodate
future needs.

Section 8 Security Controls describes security controls applicable to a typical CKMS.

Section 9 Testing and System Assurances describes security testing and assurances.

Section 10 Disaster Recovery deals with disaster recovery in general and of a CKMS
specifically.

Section 11 Security Assessment discusses the security assessment of a CKMS.

Section 12 Technology Challenges briefly discusses the technical challenges provided
by new attacks on cryptographic algorithms, key establishment protocols, CKMS
devices, and quantum computing.

Appendix A enumerates and describes useful references.

Appendix B consists of a glossary of terms used in this Framework.

Appendix C provides a list of acronyms used in this Framework.

2. Framework Basics
This section discusses the motivation, intent, properties, and limitations of a
Cryptographic Key Management Framework.

2.1 Rationale for Cryptographic Key Management
Today’s information systems and the information that they contain are considered to be
critical assets that require protection. The information used by government and business
is often contained in computer systems consisting of groups of interconnected computers
that make use of shared networks, e.g., the Internet. Since the Internet is shared by
diverse and often competing organizations and individuals, information systems should
protect themselves and the information that they contain from unauthorized disclosure,
modification, and use. In addition, denial of service to legitimate users could be
considered a significant threat in many service and time-critical application systems and
the CKMS used to protect them. Additional security requirements can be derived from
the organizational goals for protecting personal privacy, including anonymity,
unlinkability, and unobservability of CKMS-supported communications. The information

SP 800-130 August 2013

5

used by these systems requires protection when it is at rest, when it is being processed
within a protected facility, and also when it is transported from one location to another.

Cryptography is often used to protect information from unauthorized disclosure, to detect
unauthorized modification, and to authenticate the identities of system entities (e.g.,
individuals, organizations, devices or processes). Cryptography is particularly useful
when data transmission or entity authentication occurs over communications networks for
which physical means of protection (i.e., physical security techniques) are often cost-
prohibitive or even impossible to implement. Thus, cryptography is widely used when
business is conducted or when sensitive information is transmitted over the Internet.
Cryptography can also provide a layer of protection against insiders and hackers who
may have physical or possibly logical access to stored data, but not the authorization to
know or modify the data (e.g., maintenance personnel or CKMS users).

Cryptographic techniques use cryptographic keys that are managed and protected
throughout their lifecycles by a CKMS. Effectively implemented cryptography can
reduce the scope of the information management problem from the need to protect large
amounts of information to the need to protect only keys and certain metadata (i.e.,
information about the key and its authorized uses, such as the algorithm with which the
key is to be used, the security service to be provided using the key, etc.).

When designing a CKMS, the cryptographic techniques used to protect the keys managed
by the CKMS should offer a level of protection called the security strength that is
infeasible for a would-be attacker to bypass or subvert; the security strength of the
technique is the base 2 logarithm of the minimum number of operations required to
cryptanalyze the algorithm, and is often measured in bits of security. This design
principle is comparable to a design principle used in building safes and vaults: the
designer builds the vault to a standard that would discourage a rational attacker from
attempting entry; the only feasible way to open the safe is to open the safe door by trying
possible combinations until the correct combination is selected. Similarly, the only way
to decrypt previously encrypted data (without knowledge of the correct key) is to test
possible keys until, eventually, the correct key is used to decrypt the ciphertext to obtain
the correct plaintext. Just as the protection provided by a safe is dependent on the number
of its possible combinations, the strength of a cryptographic algorithm is dependent on
the number of possible keys.

Other means of gaining access to the contents of the safe or to the information that has
been encrypted may also exist. One can drill through the safe enclosure, and one can
attempt to find a shortcut method to cryptanalyze the cryptographic algorithm. Also, one
can attempt to steal the correct combination or key. Safe combinations and cryptographic
keys both require similar protection. The CKMS should be designed to provide the
necessary protection for keys and metadata.

Cryptography can be used to provide three major types of protection to data:
confidentiality, integrity, and source authentication.

SP 800-130 August 2013

6

a) Confidentiality protection protects data from unauthorized disclosure.
Encryption algorithms are used to transform plaintext data into unintelligible
ciphertext, while decryption algorithms are used to transform the ciphertext
back to the original plaintext. The transformations are controlled by one or
more cryptographic keys so that only the authorized parties who have the keys
can successfully perform the transformations.

b) Integrity protection provides mechanisms to detect unauthorized data
modifications. Cryptographic authentication algorithms typically calculate an
authentication code or digital signature, which is a function of the data being
protected and a cryptographic key used by the algorithm. It is highly unlikely
that without possession of the correct key, an entity could modify the data and
compute the correct authentication code or digital signature. Therefore,
unauthorized modifications of data can be detected before the modified data is
used.

c) Source authentication provides assurance that the protected data came from an
authorized entity. For example, suppose that a digital signature is calculated
on data and is transmitted with the data. The receiver can verify the digital
signature and therefore know that the data came from a particular entity. In
this Framework, source authentication involves authenticating the identity of
the source and then verifying that the authenticated entity is authorized to
participate in the function being performed.

These protections can be provided to any data protected by the CKMS, including keys
and the associated metadata (See Section 6.2.1, items s) and t)).

Cryptographic algorithms should reside within a cryptographic module (consisting of
hardware, software, firmware, or a combination thereof) which physically and logically
protects its contents (e.g., the algorithms, cryptographic keys, and metadata) from
unauthorized modification and disclosure. A cryptographic module is part of a CKMS
and can provide cryptographic protections to keys, metadata, and user data.

FR:2.1 The CKMS design shall specify all cryptographic algorithms and supported key
sizes for each algorithm used by the system.

FR:2.2 The CKMS design shall specify the estimated security strength of each
cryptographic technique that is employed to protect keys and their bound metadata.

2.2 Keys, Metadata, Trusted Associations, and Bindings
A key must be associated with metadata that specifies characteristics, constraints,
acceptable uses, and parameters applicable to the key. For example, a key may be
associated with metadata that specifies the key type, how it was generated, when it was
generated, its owner’s identifier, the algorithm for which it is intended, and its
cryptoperiod. Each unit of metadata is called a metadata element. Like keys, metadata
needs to be protected from unauthorized modification and may need to be protected from
disclosure; the metadata also needs to have its source adequately authenticated.

SP 800-130 August 2013

7

A metadata element may be implicitly known and therefore may not be specifically
recorded for certain keys within a CKMS. For example, if all keys within a device are
AES-128 keys, then a metadata element recording key sizes may not be required.
However, in many systems, there is a need to differentiate one key from another using
one or more explicitly recorded metadata elements. This CKMS framework focuses on
those metadata elements that are explicitly recorded and managed by the CKMS. The
term “metadata” is used in this context (i.e., the term “metadata” refers to explicitly
recorded and managed metadata elements).

There are many possible metadata elements for a given key. A trusted association,
between a key and selected metadata elements, is often needed by the CKMS in order to
perform key management functions. For example, it is desirable to have a trusted
association between a static public key and the owner’s identifier. When used in
conjunction with an owner registration process, the trusted association provides assurance
that the owner that is specified by the identifier is, or was, in possession of the
corresponding private key.

Metadata elements may be generated by the same entity that generates the key, or they
may be received from a trusted entity. Whenever metadata is received from a trusted
entity (whether or not the associated key is sent simultaneously) there must be a trusted
association between the metadata and the associated key. The trusted association
maintained during the distribution may be enforced by a cryptographic binding (binding)
of the key and metadata (e.g., a digital signature computed on the combination of the key
and metadata), or the association may be enforced by a trusted process (e.g., a face-to-
face handover of metadata from an entity who is known and trusted). A CKMS often
provides cryptographic binding and verification functions that are used in the key and
metadata distribution and management processes. The receiver obtains assurance that the
key and its metadata are properly associated, have come from a particular source, have
not been modified, and have been protected from unauthorized disclosure during transit.
Upon receipt of the metadata, the association between the key and metadata should be
verified. A cryptographic binding is verified by applying the appropriate cryptographic
verification function to the key and bound metadata elements. A non-cryptographic
trusted association is verified by assessing the trusted process (i.e., the trust in the
sending entity and the distribution process). See Figure 1 below.

SP 800-130 August 2013

8

Trusted
Association

Cryptographic
(binding)
Processes

Encryption or
Authenticated
Encryption for
Confidentiality

Digital
Signature, MAC,

or
Authenticated
Encryption for
Integrity and

Binding

Digital
Signature for

Source
Authentication

Trusted
Processes

Physical/Logical
Security for

Confidentiality
and Integrity

Human
Credentials

and/or Human
Trust for Source
Authentication

Figure 1: The Trusted Association and Supporting Processes

After being received, the metadata can be combined with other locally generated
metadata (if available), and a new trusted association between the key and all available
metadata can then be established for the information to be stored.

Metadata stored within a system also needs a trusted association between the key and its
metadata. Depending on the storage location and characteristics, the association could be
maintained using physical security or cryptographic methods. Physical security methods
include storage within a device that is trusted to maintain the association, i.e., the
confidentiality (when required) and the integrity of a key and its metadata. As long as the
integrity of the trusted association is maintained, one has assurance that the metadata
elements belong to the associated key and have not been disclosed to unauthorized
entities. However, such physical security methods might not be feasible. A physically
secure storage site might be too costly or might not be available. In this case, a
cryptographic binding could be required to provide assurance that a key and its metadata
are properly associated.

2.3 CKMS Applications
A CKMS can be designed to provide services for a single individual (e.g., in a personal
data storage system), an organization (e.g., in a secure VPN for intra-office
communications), or a large complex of organizations (e.g., in secure communications
for the U.S. Government). A CKMS can be owned or rented.

SP 800-130 August 2013

9

2.4 Framework Topics and Requirements
This Framework contains a list of Framework Topics (FTs) (corresponding to the section
headings) and, for each topic, a set of Framework Requirements (FRs) that need to be
satisfied when designing a CKMS (see Figure 2 below). These requirements are placed
on the CKMS design.

Figure 2: Framework of Topics and Requirements

This Framework does not impose any specific policies, procedures, security
requirements, or system design constraints on the CKMS; it simply requires that they be
documented in a structured manner so that CKMS designs can be understood and
compared.

This Framework is not oriented to a particular CKMS or class of CKMS for a sector
(such as the U.S. Federal Government, Aerospace, Health Care, etc.). This Framework is
intended to be applicable to all CKMS.

FR:2.3 A compliant CKMS design shall describe design selections and provide
documentation as required by the requirements of this Framework.

2.5 CKMS Design
The purpose of a CKMS design is to describe how a system can be built to provide
cryptographic keys to the entities that will use those keys to protect sensitive data. The
high-level description of the CKMS should indicate the uses of each key type, where and

Framework
Topics

Framework
Requirements

FRAMEWORK

FT1

.
FTi

FTn

FR:1.1
FR:1.2

FR:i.1

FR:n.1
FR:n.2

FR:n.m

SP 800-130 August 2013

10

how keys are generated, how they are protected in storage at each entity where they
reside and during delivery, and the types of entities to whom they are delivered.

Figure 3 illustrates how a CKMS Design can be shown to be compliant with this
Framework. For each Framework requirement FR:i.j, the appropriate Framework
response, fr:i.j, is provided by the CKMS designer to meet the requirement. The
complete set of pairs consisting of requirements and responses {FR:i.j, fr:i.j} form the
CKMS Design.

Figure 3: The CKMS Design Process for Framework Conformance

FR:2.4 The CKMS design shall specify a high-level overview of the CKMS system that
includes:

a) The use of each key type,
b) Where and how the keys are generated,
c) The metadata elements that are used in a trusted association with each key type,
d) How keys and/or metadata are protected in storage at each entity where they

reside,
e) How keys and/or metadata are protected during distribution, and
f) The types of entities to which keys and/or metadata can be delivered (e.g., user,

user device, network device).

Framework
Requirements

Responses to
Requirements

Concatenation
Function

{FR:i.j} {fr:i.j}

{FR:i.j, fr:i.j}
CKMS Design

SP 800-130 August 2013

11

2.6 CKMS Profiles
A CKMS Profile specifies requirements that a qualifying CKMS, its implementation, and
its operation must meet for a particular sector of organizations, such as Federal Agencies.
A CKMS Profile specifies how the CKMS must be designed, implemented, tested,
evaluated, and operated. A sector is a group of organizations that have common
requirements for a product, system, or service. A CKMS Profile is a set of requirements
concerning security and interoperability that must be satisfied by a CKMS as
implemented in an operational system. This Framework may be used to derive a specific
CKMS Profile for a particular sector. As with the Framework, one or more Profile
Requirements correspond to each Profile Topic.

2.7 CKMS Framework and Derived Profile
Figure 4 depicts the relationship between the CKMS Framework and a derived sector
Profile. When deriving a CKMS Profile from a Framework, the requirements of the
Framework could be augmented and refined to meet the needs of the selected sector. For
example, NIST could use this Framework to develop a Federal CKMS Profile for U.S.
Federal Government agencies by selecting certain standards and protocols that comply
with applicable Federal Information Processing Standards (FIPS), NIST Special
Publications (SPs), and guidelines as necessary to meet the refined requirements.

Figure 4: Relationship of CKMS Framework and Sector Profile(s)

1

CKMS Framework and Profile

CKMS
Framework

Sector
Profile

Select

Refine

Augment

SP 800-130 August 2013

12

2.8 Differences between a Framework and a Profile
A Framework requires that specific topics be addressed in the design of a CKMS, but it is
not judgmental on the design itself. Any CKMS could be designed and specified in
accordance with this Framework. On the other hand, a Profile states what requirements
must be met in order to have a satisfactory CKMS for the designated using sector. A
CKMS Profile makes judgments (i.e., specifies what is necessary to be implemented and
used to be compliant with the Profile). CKMS that comply with this Framework may not
comply with a particular profile. For example, FR:2.1 in Section 2.1 requires that the
CKMS design specify all cryptographic algorithms that are used by the CKMS. A U.S.
Federal CKMS Profile might require that only NIST-approved cryptographic algorithms
be used.

2.9 Example of a Distributed CKMS Supporting a Secure E-Mail Application
Figure 5 depicts a distributed CKMS that communicates among systems (shown in the
figure as System A, System B, and System C) via the Internet. The CKMS consists of the
union of all the CKMS modules (shown in the figure as CKMS Module A, CKMS
Module B, and CKMS Module C). Each CKMS module is considered a logical entity
within its system. Any parts of the system that perform CKMS functions are parts of the
logical CKMS module at the time those functions are performed. In addition, parts of the
CKMS module (e.g., an encryption algorithm) may be used by other applications (e.g.,
encrypting general data).

Figure 5: Example CKMS Overview
The actual communication mechanisms that interact with the other systems containing
CKMS modules via the Internet are not part of the CKMS. However, the parts of

SP 800-130 August 2013

13

protocols that perform CKMS functions (e.g., generating keys and providing key
management information for insertion into the protocols) are considered part of the
CKMS.

Figure 6 is an example of an email application that uses a distributed CKMS. The
sender’s email application interfaces with the CKMS module, which generates the keys
that will be used to apply the required cryptographic protection for the email data to be
sent to the intended receiver via the Internet and, if required, to apply cryptographic
protection to the keys that will be transported to the receiving entity. The email
application then hands off the protected key and the protected data to the communication
mechanism for transmission. Note that the communication mechanism may also interact
with the CKMS module as discussed for Figure 5.

The communication mechanism in the sender’s system interacts with its CKMS module,
as appropriate, prior to sending the cryptographically protected email to the email
application. The email application sends the protected key to its local CKMS module to
obtain the key that will subsequently be used to process the protected email data.

Figure 6: Example of a Secure Email Application

2.10 CKMS Framework Components and Devices
This CKMS Framework uses the term “component” to mean the hardware, software,
and/or firmware required to construct the CKMS. The term “device” denotes a

SP 800-130 August 2013

14

combination of components that serve a specific purpose. A CKMS can be as simple as a
software program running on a single-user computer and supporting user applications. It
can also be as complex as a variety of sub-systems, each containing many devices that
provide key management services to numerous networked users and applications. A
CKMS can be implemented in a single computer, or it may be widely distributed
geographically and connected with a myriad of communications networks. Processors,
communications media, storage units, etc. are all considered devices in this Framework.

A CKMS can be described as a set of policies, procedures, devices, and components that
are designed to protect, manage, and establish cryptographic keys and metadata. The
CKMS provides a set of functions that perform cryptographic key-management services
on behalf of one or more organizations and their users. Collectively, these functions are
presented as items for specification in a CKMS design (see Section 6.4).

FR:2.5 The CKMS design shall specify all major devices of the CKMS (e.g., the make,
model, and version).

3. Goals
A CKMS should be designed to achieve specific goals. Some possible goals are discussed
in this section.

3.1 Providing Key Management to Networks, Applications, and Users
There is an extensive use of cryptography in several security protocol standards (e.g.,
TLS, IKE, SSH, CMS), where both static keys (i.e., long-term keys) and ephemeral keys
(i.e., keys used only for a single session or key management transaction) are used by the
protocols themselves. While the focus of a CKMS is on the generation, distribution and
storage of the static keys, a CKMS design must also include the generation, storage, and
protection of the employed ephemeral keys as well.

The network over which the CKMS operates forms the communications backbone of the
CKMS. The CKMS designer needs to understand the efficiency and reliability of the
network so that the CKMS can be designed to have minimal negative impact on the
network. The network size and scalability will provide some indication as to the number
of users that the CKMS will need to handle both initially and in the future. Network
characteristics, such as error properties, may also influence the selection of the
cryptographic algorithms and cryptographic modes of operation that may extend (or
worsen) the effects of communication errors after decryption is performed.

A CKMS can be built to serve a particular application (e.g., E-Mail, data storage,
healthcare systems, and payment systems), or it can be designed to serve an entire
enterprise, which encompasses many applications. A CKMS designed for a single
application tends to be specifically designed for and closely integrated into the
application, while an enterprise CKMS should be more generic so that common key-
management functions may be shared as much as possible. A CKMS designer needs to

SP 800-130 August 2013

15

have a good understanding of the application(s) that are to be supported, since they will
likely affect the design choices.

The CKMS designer should also study the potential users of the system. How many users
will use the CKMS and for what purposes? Are the users mobile or stationary? Do the
users need to be knowledgeable about the CKMS, or will it be transparent to them? Are
users operating under stressful conditions, where time is of the essence in performing
their jobs? Some CKMS have failed because the designer assumed that the user
understood the purpose and importance of cryptographic keys and public key certificates.
If users are hampered from doing their work by a CKMS, then the CKMS will likely not
be a successful security solution because it will not be used.

The goal of the CKMS designer is to specify a set of security mechanisms that function
well together, provide a desired level of security that meets the needs of the application(s)
and using organization(s), are affordable, and have a minimum negative impact on
operations. These, as well as other CKMS goals, should be considered before a CKMS is
designed, implemented, and operated.

FR: 3.1 The CKMS design shall specify its goals with respect to the communications
networks on which it will function.

FR:3.2 The CKMS design shall specify the intended applications that it will support.

FR:3.3 The CKMS design shall list the intended number of users and the responsibilities
that the CKMS places on those users.

3.2 Maximize the Use of COTS in a CKMS
Customers generally prefer Commercial Off-The-Shelf (COTS) products. Such products
are often less costly to acquire, operate, and maintain than custom products designed and
built for a single customer. However, COTS products designed and built to satisfy the
“least common denominator” requirements of a large number of customers may not
completely satisfy any of the customers. If the CKMS designer uses products that meet a
range of requirements in a specific market sector, the CKMS will be more likely to be
accepted in that market.

Using standard interfaces generally improves the extensibility of the product. Extensions
and improvements should be allowed and supported by the COTS design of a CKMS so
that the CKMS can be configured to meet varying functional and workload demands,
including those based on the number of users, transactions, keys, and application data.

FR:3.4 The CKMS design shall specify the COTS products used in the CKMS.

FR:3.5 The CKMS design shall specify which security functions are performed by
COTS products.

SP 800-130 August 2013

16

FR:3.6 The CKMS design shall specify how COTS products are configured and
augmented to meet the CKMS goals.

3.3 Conformance to Standards
Much can be learned about a CKMS by examining the extent to which it utilizes
applicable standards. Designs that comply with standards have the benefit of the
experience and wisdom of those who developed the standards. In addition, if the
standards have validation programs that measure compliance, there is increased
confidence that the CKMS has been correctly implemented. See Appendix A for a list of
appropriate standards with a brief description of each.

Standards specify how something shall or should be done. Multiple vendors can build to
the same standard and, thereby, foster interoperability and competition. In addition, the
use of standards often increases confidence in the product or implementation. There is
increased confidence in a standard that was developed and reviewed by multiple parties
working together. Complying with standards may also reduce the time-to-production for
a product or the time-to-operation for an implementation, since the essential concepts do
not have to be re-invented. Conformance-testing laboratories are useful in that errors in
implementations may be found and eliminated before products are available in the
marketplace.

FR:3.7 The CKMS design shall specify the Federal, national, and international standards
that are utilized by the CKMS.

The availability of commercial products that conform to one or more standards in a
CKMS architecture can greatly reduce the time and cost of producing a CKMS. The up-
front cost of a conformance-tested product is likely to be more than offset by the saved
costs of not having to adapt a non-conforming product or to build a similar product from
scratch.

FR:3.8 For each standard utilized by the CKMS, the CKMS design shall specify which
CKMS devices implement the standard.

FR:3.9 For each standard utilized by the CKMS, the CKMS design shall specify how
conformance to the standard was validated (e.g., by a third party testing program).

3.4 Ease-of-use
Possibly the most significant constraint to the use of a CKMS is the difficulty that some
systems present to the untrained user. Since most users are not cryptographic security
experts, and security is often a secondary goal for them, the CKMS needs to be as
transparent as possible. User interfaces that adapt to the expertise of the user can guide a
new and less-trained user, while permitting an expert to use efficient short cuts and to
bypass step-by-step guidance.

SP 800-130 August 2013

17

3.4.1 Accommodate User Ability and Preferences
Ease-of-use is very subjective. Something easy or obvious for one person may not be
easy or obvious for another. Designers should keep in mind that users are not usually
security experts, so they may not understand the purpose of the security feature that they
are using. Since security is not usually the primary purpose of the product, transparent
security is desirable. Negative experiences will likely affect the acceptance and use of a
product. Therefore, a large segment of the potential user population needs to be satisfied
that a security product is easy to use.

FR:3.10 The CKMS design shall specify all user interfaces to the system.

FR:3.11 The CKMS design shall specify the results of any user-acceptance tests that
have been performed regarding the ease of using the proposed user interfaces.

3.4.2 Design Principles of the User Interface
While ease-of-use may be highly subjective and difficult to evaluate, several design
principles for achieving this goal have been established. Ease-of-use design goals should
assure that:

a) It is intuitive and easy to do the right thing using the CKMS. For example, key
management function calls should be intuitively named.

b) It is difficult to do the wrong thing using the system. For example, the CKMS
should not permit encryption using a signature-only key.

c) It is intuitive and easy to recover when a wrong thing is done. For example, the
CKMS should provide an undo function that reverses the previous function.

This approach reduces the total lifecycle cost by reducing user support costs.

FR:3.12 The CKMS design shall specify the design principles of the user interface.

FR:3.13 The CKMS design shall specify all human error-prevention or failsafe features
designed into the system.

3.5 Performance and Scalability
Performance improvements in computing and communications are major success stories
in the computer industry. As performance improves, new applications require that even
faster processing and communications be available. In the past, large key-distribution
centers often serviced a maximum of several thousand security subscribers. Now,
millions of people use the Internet regularly with ever-increasing demands, including new
demands for security and for cryptographic keys. The need for secure processing, data
storage and communications will continue to grow. This growth will require a CKMS to
be scalable in order to meet the growing workload.

FR:3.14 The CKMS design shall specify the performance characteristics of the CKMS,
including the average and peak workloads that can be handled for the types of functions

SP 800-130 August 2013

18

and transactions implemented, and the response times for the types of functions and
transactions under those respective workloads.

FR:3.15 The CKMS design shall specify the techniques that are supported and can be
used to scale the system to increased workload demands.

FR:3.16 The CKMS design shall specify the extent to which the CKMS can be scaled to
meet increased workload demands. This shall be expressed in terms of additional
workload, response times for the workload, and cost.

4. Security Policies
A CKMS must be designed in a manner that supports the goals of each organization
using the CKMS. Several types of policies will influence the design and use of a CKMS.

An organization may have different policies covering different applications or categories
of information. For example, a military-related organization may have one set of policies
covering classified information and a totally different set of policies covering personnel
information.

An organization often creates and relies on layered policies, with high-level policies
addressing issues at the information-management level and lower-level policies
addressing specific rules for data-protection. A physical security policy may be specified
in one document, and a communication security policy may be specified in another
document. Computer systems are often built in accordance with their own computer
security policy.

Layers of policies (e.g., information management, information security, physical security,
computer security, communications security, and cryptographic key security) interrelate
in many ways. Intermediate and lower layers of a policy hierarchy should provide more
details on implementation and enforcement than the next higher layer. For example, an
organizational Information Management Policy specifying that information must be
protected against unauthorized disclosure should result in an Information Security Policy
specifying the restriction of access to and use of the information only to properly
identified and authorized people.

An organization may use a hierarchy of policies that will determine their requirements for
a CKMS. Figure 7 provides an example of the policies that may be used and their
relationships. Further discussion about these policies is provided in the following
subsections.

SP 800-130 August 2013

19

Figure 7: Related Security Policies

4.1 Information Management Policy
An organization’s Information Management Policy specifies what information is to be
collected or created, and how it is to be managed. An organization’s management
establishes this policy using industry standards of good practices, legal requirements
regarding the organization’s information, and organizational goals that must be achieved
using the information that the organization will be collecting and creating.

An Information Management Policy typically identifies management roles and
responsibilities and establishes the authorization required for people performing these
information-management duties. It also specifies what information is to be considered
valuable and sensitive and how it is to be protected. In particular, this highest policy layer
specifies what categories of information need to be protected against unauthorized
disclosure, modification or destruction. These specifications form the foundation for an
Information Security Policy and dictate the levels of confidentiality, integrity,
availability, and source-authentication protections that must be provided for differing
categories of sensitive and valuable information.

4.2 Information Security Policy
An organization’s Information Security Policy is created to support and enforce portions
of the organization’s Information Management Policy by specifying in more detail what
information is to be protected from anticipated threats and how that protection is to be
attained. The rules for collecting, protecting, and distributing valuable and sensitive

Information
Management

Policy

Information
Security

Policy

CKMS
Security
Policy

Derives/Directs lower, more specific, policy

Supports/Enforces higher, more general, policy

Industry Standards

Organizational Objectives

Mgt. Roles & Responsibilities

Information Assurance Goals

Data Labels/ Sensitivity Levels

Rules for Administrative Protection

CKM Requirements

Key/Metadata Protection

Threats to Information

Risks of Information
Disclosure, Modification, Loss

Technical Threats to Data

Technical Security Standards

Cryptographic Algorithms

Applicable CKMS Profiles

Inputs to Policy Making/Makers

Policy Derived Requirements

Other
Related
Security
Policies

SP 800-130 August 2013

20

information in both paper and electronic form are specified in this layer of policy. The
inputs to the Information Security Policy include, but are not limited to, the Information
Management Policy specifications, the potential threats to the security of the
organization’s information, and the risks involved with the unauthorized disclosure,
modification, and destruction or loss of the information.

The outputs of the Information Security Policy layer include information sensitivity
levels (e.g., low, medium, and high) assigned to various categories of information and
high-level rules for protecting the information. The Information Security Policy may also
be used to create a CKMS Security Policy that specifies the use and protection of
cryptographic keys, algorithms, and mechanisms that provide confidentiality and
integrity protection of the keys and their metadata for the organization.

4.3 CKMS Security Policy
The CKMS Security Policy specifies rules for the protection of keys and metadata that
the CKMS must support. A CKMS Security Policy needs to establish and specify rules
for protecting the confidentiality, integrity, availability, and source authentication of all
cryptographic keys and metadata used by the CKMS. These rules cover the entire key
lifecycle, including when they are operational, stored, and transported. The CKMS
Security Policy may include the selection of all cryptographic mechanisms and
cryptographic protocols that can be used by the CKMS. The CKMS Security Policy
needs to be consistent with the higher-level policies of the organization. For example, if
the Information Security Policy states that the confidentiality of electronically transmitted
information is to be protected for up to 30 years, then the CKMS Security Policy and the
CKMS design must be capable of supporting that policy.

The designer of a CKMS might not be a member of the organization that will be using
the CKMS, and might not have access to the organization’s policies, e.g., the
organization may purchase a CKMS or the services of a CKMS that was developed
external to the organization. The designer of the CKMS should create a set of security
capabilities or features in the design that support the market for which the designer is
creating the CKMS. These capabilities or features should be documented by the designer
and can be considered to form the designer’s initial CKMS Security Policy. The design
documentation should state how and when the features are used to support the CKMS
Security Policy. The organization may work with the designer or the CKMS service
provider to develop a modified CKMS Security Policy, based on the initial CKMS
Security Policy developed by the designer. Ultimately, it is the responsibility of the
organizations that use the CKMS to assure that the CKMS design adequately supports, or
can be configured to support, the (possibly modified) CKMS Security Policy.

The specific protections applied to each key type and its metadata (see Section 6) may be
considered as supporting the Key Security Policy, which would be a part of the CKMS
Security Policy. A Key Security Policy would state the policy for confidentiality,
integrity and source authentication for the key and its metadata over the entire key
lifecycle. These policies would then be supported by the CKMS.

SP 800-130 August 2013

21

A Key and Metadata Retention Policy specifying the length of time that keys and
metadata are to be retained should also be part of the CKMS Security Policy. The Key
and Metadata Retention Policy should be based on the sensitivity of the information that
the keys and metadata protect. The CKMS should enforce the Key and Metadata
Retention Policy. For example, the CKMS should protect keys and metadata throughout
their security lifetimes, and then the CKMS should destroy the keys and metadata when
they are no longer desired.

A CKMS Security Policy should be written so that the people responsible for maintaining
the policy can easily understand the policy and correctly perform their roles and
responsibilities. Note that security policies could be specified in a form (e.g., tables,
formal specification languages, flow charts) that could be stored electronically and
processed automatically within a CKMS. Policies specified in a formal language could
be automatically enforced by a CKMS designed to do so. Such systems may be able to
check themselves for proper functioning, diagnose current or potential problems, report
the problem to the responsible organizational entity, and perhaps even automatically
correct the problem.

FR:4.1 The CKMS design shall specify the CKMS Security Policy, including the
configurable options and sub-policies that it is designed to enforce.

FR:4.2 The CKMS design shall specify how the CKMS Security Policy is to be enforced
by the CKMS (e.g., the mechanisms used to provide the protection required by the
policy).

FR:4.3 The CKMS design shall specify how any automated portions of the CKMS
Security Policy are expressed in an unambiguous tabular form or a formal language (e.g.,
XML or ASN.1), such that an automated security system (e.g., table driven or syntax-
directed software mechanisms) in the CKMS can enforce them.

4.4 Other Related Security Policies
A CKMS Security Policy may include or rely on other security policies. A CKMS design
should state what other policies are required to be enforced for proper and secure
operation of the CKMS. For example, a CKMS could be designed and implemented to
provide all the physical protection and access control required to assure protection of the
CKMS itself. It could also be designed assuming (and requiring) that external physical
security and access control is provided by the facility in which the CKMS is installed and
operated. Computer systems are often built to their own Computer Security Policy. An
organization should create these policies in a logical structure that assigns roles for
managing and enforcing the policies to appropriate parts of the organization.

FR:4.4 The CKMS design shall specify other related security policies that support the
CKMS Security Policy.

SP 800-130 August 2013

22

4.5 Interrelationships among Policies
A CKMS designer should be aware of the various policies of organizations that may
procure and use CKMS products or services. The designer could design a simple CKMS
that enforces a simple key-management policy for a single organization or a complex
CKMS product that can support a variety of security policies.

FR:4.5 The CKMS design shall specify the policies that are supported by the CKMS
design and a summary of how they are supported by the design.

4.6 Personal Accountability
A policy of personal accountability requires that every person who accesses sensitive
information be held accountable for his or her actions. Personal accountability may be a
requirement in an Information Management Policy that results in specific features in the
CKMS. A CKMS designer should determine if the CKMS is intended to support
personal accountability. If it is, then mechanisms should be provided within the CKMS
to support accountability for the management of keys and metadata.

FR:4.6 The CKMS design shall specify if and how personal accountability is supported
by the CKMS.

4.7 Anonymity, Unlinkability, and Unobservability
An Information Management Policy may state that users of the secure information-
processing system can be assured of anonymity, unlinkability, and unobservability.
Anonymity assures that public data cannot be related to the owner. Unlinkability assures
that two or more related events in an information-processing system cannot be related to
each other. Finally, unobservability assures that an observer is unable to identify or infer
the identities of the parties involved in a transaction.

FR:4.7 The CKMS design shall specify the anonymity, unlinkability, and
unobservability policies that can be supported by the CKMS.

4.7.1 Anonymity
In order to provide privacy to entities, to adhere to applicable privacy laws, or to enhance
security, a CKMS may require anonymity of CKMS transactions in terms of the entities
that participate in the transaction. For privacy reasons, a CKMS may also require
anonymity when associating keys and/or metadata with entities.

FR:4.8 The CKMS design shall specify which CKMS transactions have or can be
provided with anonymity protection.

FR: 4.9 The CKMS design shall specify how CKMS transaction anonymity is achieved
when anonymity assurance is provided.

SP 800-130 August 2013

23

4.7.2 Unlinkability
In order to provide privacy to entities, to adhere to applicable privacy laws, or to enhance
security (by protecting against inferring who is associated with a given transaction), a
CKMS may provide unlinkability protection for CKMS transactions in terms of the
entities that participate in the transaction.

FR:4.10 The CKMS design shall specify which CKMS transactions have or can be
provided with unlinkability protection.

FR:4.11 The CKMS design shall specify how CKMS transaction unlinkability is
achieved.

4.7.3 Unobservability
In order to provide privacy to entities, to adhere to applicable privacy laws, or to enhance
security (by protecting against inferring any information whose disclosure might not be
desired), a CKMS may provide unobservability of CKMS transactions in terms of the
entities that initiate or participate in the transaction.

FR:4.12 The CKMS design shall specify which CKMS transactions have or can be
provided with unobservability protection.

FR:4.13 The CKMS design shall specify how CKMS transaction unobservability is
achieved.

4.8 Laws, Rules, and Regulations
The security policies of an organization should conform to the laws, rules, and
regulations of the locality, state, and nation(s) in which the CKMS will be used. If a
CKMS is designed for international use, then it should be flexible enough to conform to
national restrictions.

FR:4.14 The CKMS design shall specify the countries and/or regions of countries where
it is intended for use and any legal restrictions that the CKMS is intended to enforce.

4.9 Security Domains
A security domain is a collection of entities, including their CKMS, in which each CKMS
operates under the same security policy − known as the Domain Security Policy. When
two mutually trusting entities are in the same security domain, the entities can exchange
keys and metadata while providing the protections that are required by the Domain
Security Policy.

When two entities are in different security domains, they may not be able to provide
equivalent protection to the exchanged keys and metadata because they operate under
different domain security policies. However, there are circumstances in which an entity in
one domain can send keys and metadata to another entity in a different domain, even
though the domain security policies are not completely identical.

SP 800-130 August 2013

24

An example of a security domain is a Public Key Infrastructure (PKI) that issues public
key certificates (see [X.509]). The PKI operates under one or more documented
certificate policies, and each public key certificate contains the certificate policies for
which the certificate is valid. The relying entity (the certificate user) can examine the
certificate and determine if the certificate provides acceptable security. However, when
entities from different PKI domains wish to communicate, and hence use each other’s
certificates, the certificate policies of the two PKI domains should be examined and
verified as offering equivalent security before the certificate should be used.

4.9.1 Conditions for Data Exchange
When an entity wishes to securely send a key and/or metadata to another entity, certain
conditions must be satisfied:

a) There must be a means of sending and receiving the information, called a
communications channel,

b) The two entities must have interoperable cryptographic capabilities (e.g.,
functionally identical encryption/decryption algorithms that utilize identical key
lengths),

c) The two entities must subscribe to equivalent (though perhaps different) security
policies, and

d) The two entities must trust each other (and perhaps other entities in the network)
to enforce their own security policies2.

If the entities belong to the same security domain, there is a high likelihood that each of
these conditions can be met. But, if the entities do not belong to the same security
domain, then these conditions are less likely to be satisfied. In the remainder of this
section, assume that conditions a), b), and d) are met; the discussion will focus on
condition c).

FR:4.15 The CKMS design shall specify design features that allow for the exchange of
keys and metadata with entities in other security domains that are considered to offer
equivalent but different security protections.

4.9.2 Assurance of Protection
Protection assurances include protecting a key and/or metadata from unauthorized
disclosure, protecting the key and/or metadata from unauthorized modification, and
knowing the source and destination of a key and/or metadata as required by the
application. Suppose that entity A in security domain A wishes to send a cryptographic
key and/or metadata to entity B in security domain B, and that conditions a), b), and d)
above are satisfied. Suppose also that entity B wishes to receive the key and/or metadata
and treat the received key and/or metadata exactly as it treats its own keys and/or

2 An entity receiving data previously protected by one or more entities must trust the other
entities to have properly enforced their own security policies.

SP 800-130 August 2013

25

metadata. That is to say, entity B in no way distinguishes the protections provided to the
received key and/or metadata from those provided to its own keys and/or metadata.
Before entity A sends the key and/or metadata, it must have assurance that the protection
requirements in domain B’s security policy are at least as good as those in domain A’s
security policy. Also, entity B would desire assurance that the protection requirements in
domain A’s security policy are at least as good as those in domain B’s security policy. In
essence, the two domains must have equivalent domain security policies

The protection assurances required for data sent from entity A to entity B are shown in
Figure 8.

Figure 8: Protection Assurances between Security Domains

FR:4.16 The CKMS design shall specify the source and destination authentication
policies that it enforces when sharing a key and/or metadata with entities in differing
security domains.

FR:4.17 The CKMS design shall specify the confidentiality and integrity policies that it
enforces when sharing a key and/or metadata with entities in differing security domains.

FR:4.18 The CKMS design shall specify what assurances it requires when
communicating with entities from other security domains.

E

Security Domain A Security Domain B

Entity A Entity BKey

Domain B
Security Policy

Domain A
Security Policy

Are the protection assurances
provided by entity B at least
as strong as what is required
by the domain A security
policy?

Are the protection assurances
provided by entity A at least
as strong as what is required
by the domain B security
policy?

SP 800-130 August 2013

26

4.9.3 Equivalence of Domain Security Policies
Two security domains have equivalent security policies if the authority responsible for
each security domain agrees to accept the other domain’s policy as being equivalent to its
own policy in terms of the security protections provided. The domain security policies
have to be carefully examined before acceptance by the authorities responsible for each
domain3. This process may be impossible if the authorities are not able to agree on the
equivalence of protections. The authorities responsible for a security domain may restrict
the security level of key and/or metadata, and therefore data, that they are willing to share
with other domains in order to mitigate the consequences of any potential compromises.
If entity A and entity B attempt to share a key and/or metadata, and security domain B
has weaker policies than security domain A, then a sophisticated CKMS should, at a
minimum, inform entity A of the possible security consequences.

If it is determined that the policies of the two domains are equivalent, an entity in one
domain may share data with any entity in another equivalent domain, when appropriate.

FR:4.19 The CKMS design shall specify if and how it supports the review and
verification of another domain’s security before intra-domain communications are
permitted.

FR: 4.20 The CKMS design shall specify how it detects, prevents or warns an entity of
the possible security consequences of communicating with an entity in a security domain
with weaker policies.

4.9.4 Third-Party Sharing
Suppose that entity A in security domain A and entity B in security domain B have
equivalent domain security policies. In that case, it would be reasonable for entity A and
entity B to share keys and/or metadata with any of the other members in either domain A
or domain B, because each security domain has accepted the other domain’s security
policy. However, suppose that entity B also shares keys and metadata with a third entity,
entity C in domain C. In this case, entity A and entity B have assurance that their
respective domain security policies are equivalent and entity B and entity C have
assurance that their respective domain security policies are equivalent. If entity B treats
keys and/or metadata received from entity A in the same manner as its own keys and/or
metadata, then entity A should expect that keys and/or metadata shared with entity B may
also be shared with other equivalent security domains. When two entities examine each
other’s domain security policies for equivalence, they should pay close attention to each
other’s policies for sharing keys, metadata and other information with entities in other
security domains.

3 The process of determining the equivalence of security policies is similar to the Certificate
Authority cross-certification process for Public Key Infrastructures.

SP 800-130 August 2013

27

4.9.5 Multi-level Security Domains
A security domain could contain entities, each of which supports the same multi-level
Domain Security Policy. For example, the Domain Security Policy could provide either a
high level or a low level of protection to the keys and/or metadata that it processes. In this
case, the security domain acts much like two separate security domains because it must
distinguish between the two levels of protection. Each entity must ensure that keys and/or
metadata protected by the higher-level policy are always provided the higher level of
protection, that keys and/or metadata protected by the lower-level policy cannot be
confused with the higher-level keys and/or metadata, and that higher-level keys and/or
metadata do not get confused with lower-level keys and/or metadata. This typically
involves a multi-level operating system. See Figure 9. Physical entity B is divided into
two logical entities: entity BHL for high-level protection, and entity BLL for low-level
protection. The separation of the BHL keys from the BLL keys is maintained logically (as
indicated by the dashed line in the figure) by the operating system. The advantage of a
multi-level security domain is that it can process keys and/or metadata from entities
operating at different security levels.

Figure 9: Multi-level Security Domain

FR: 4.21 The CKMS design shall specify whether or not it supports multilevel security
domains.

FR:4.22 The CKMS design shall specify each level of security domain that it supports.

Multi-Level
Security Domain B

Entity A

Entity BHL

Key KHL

Entity BLL

Entity C Low Level Policy

High Level Policy

High Level
Policy

Low Level
Policy

Security Domain A

Security Domain C

Key KLL

SP 800-130 August 2013

28

FR:4.23 If multilevel security domains are supported, the CKMS design shall specify
how it maintains the separation of the keys and metadata belonging to each security level.

4.9.6 Upgrading and Downgrading
Under certain conditions, a domain authority may decide that a key and/or metadata from
an entity in a lower-level security domain (a domain providing less protection) can be
accepted and subsequently protected at the higher level required by its own Domain
Security Policy. This process is called upgrading. Upgrading is not without risk and
should only be done if the authority responsible for the higher-level domain has trust and
confidence in the source and authenticity of the key and/or metadata from the lower level.
A mistake in judgment by the domain authority could result in security compromises to
the domain entities. Likewise, under certain conditions, the domain authority for a
higher-level security domain may wish to pass a key and/or metadata down, or
downgrade, to a lower-level domain entity. In this case, the domain authority for the
higher-level domain should have confidence that the key and/or metadata being passed
down only require the lower level of security provided by the receiver.

FR:4.24 The CKMS design shall specify if and how it supports the upgrading or
downgrading of keys and metadata.

FR:4.25 The CKMS design shall specify how upgrading or downgrading capabilities are
restricted to the domain authority.

4.9.7 Changing Domain Security Policies
From time to time, it may be desirable to modify or update a Domain Security Policy.
The update may be the result of a management decision to upgrade the protections
provided to the keys and metadata elements, it may be the result of a desire to be
equivalent with another security domain, or it may be to support a new application.

Some CKMS may be designed so that their domain security policies may be configured
to permit communications with entities in different domains. For example, a security
domain may allow certain management officials to select the key and/or metadata
management functions that are used to support various applications. These domains are
said to be configurable. Even if a specific Domain Security Policy change is within the
capability of a configurable system, the domain management personnel should still
approve any policy change before the change is made.

FR:4.26 The CKMS design shall specify if and how its key and/or metadata management
functions may be configured to support differing domain security policies and differing
applications.

FR:4.27 The CKMS design shall specify if and how it can support changes in its Domain
Security Policy by being reconfigured to accommodate communications with entities in
different security domains.

SP 800-130 August 2013

29

5. Roles and Responsibilities
A CKMS may need to interface with humans that are performing specific management,
user, and/or operational roles. Each role should have specific authorizations defined for
it, and the persons performing that role should be provided access to a set of key and
metadata management functions that are necessary for carrying out the responsibilities of
the role. Examples of possible CKMS roles include, but are not limited to, the following:

a) System Authority: A system authority is responsible to executive-level
management (e.g., the Chief Information Officer) for the overall operation and
security of a CKMS. A system authority manages all operational CKMS roles. An
operational role is a role that directly operates the CKMS.

b) System Administrator: System administrators are responsible for the personnel,

daily operation, training, maintenance, and related management of a CKMS other
than its keys. The system administrator is responsible for initially verifying
individual identities and then establishing appropriate identifiers for all personnel
involved in the operation and use of a CKMS. These include users, security
auditors, cryptographic officers, key custodians, operators, maintenance workers,
and agents required to vet the credentials of people seeking access to data in the
system or use of the CKMS.

c) Cryptographic Officer: A cryptographic officer is authorized to perform

cryptographic initialization and management functions on a CKMS and its
cryptographic modules.

d) Domain Authority: A domain authority is responsible for defining and accepting

a Domain Security Policy, for subsequently deciding the conditions necessary for
communicating with other security domains, and then for assuring that the
conditions are met.

e) Key Custodian: A key custodian is designated to distribute and/or load keys or

key splits into a cryptographic module. Key custodians may be used to implement
multi-party control and key splitting (See Section 6.7.4 and Section 6.7.5).

f) Key Owner: A key owner is an entity (e.g., person, group, organization, device,

or cryptographic module) authorized to use a cryptographic key or key pair and
whose identifier is associated with a cryptographic key or key pair. For public-
private key pairs, the association is typically established through a registration
process. A symmetric key may have a single specific owner, or multiple owners
may share the key.

g) CKMS User: CKMS users utilize the CKMS when key management functions

are required to support an application. CKMS users may be, and often are, key
owners.

SP 800-130 August 2013

30

h) Audit Administrator: An audit administrator is responsible for auditing all
aspects of a CKMS to verify its security and authorized operation. In particular,
the audit administrator will manage and review the event log and should have no
operational responsibilities for the CKMS. Audit administrators should not have
access to any operational keys other than their own keys.

i) Registration Agent: A registration agent is responsible for registering new

entities and binding their key(s) to their identifiers and perhaps other selected
metadata. The registration agent may also enter entity information, keys, and
metadata into a database used by the CKMS.

j) Key-Recovery Agent: A key-recovery agent is allowed to recover keys from

backup or archive storage after identity verification and authorization of the
requesting entity is performed in accordance with the CKMS Security Policy (see
Sections 6.4.15 and 6.4.17).

k) CKMS Operator: A CKMS operator is authorized to operate (e.g., initiate the

CKMS, monitor performance, and perform backups) a CKMS as directed by the
system administrator.

Multiple individuals may be assigned to each role, and a single person may have multiple
roles. However, certain roles should be separated so that no individual is assigned to both
roles at the same time. For example, audit logs should be managed by someone other than
a system administrator in order to detect administrative misuse or abuse. In addition, it is
wise to rotate individuals from roles so as to minimize the likelihood of long-term abuses.

FR:5.1 The CKMS design shall specify each role employed by the CKMS, the
responsibilities of each role, and how entities are assigned to each role.

FR:5.2 The CKMS design shall specify the key and metadata management functions (see
Section 6.4) that can be used by entities fulfilling each role employed by the CKMS.

FR:5.3 The CKMS design shall specify which roles require role separation.

FR:5.4 The CKMS design shall specify how the role separation is maintained for the
roles that require role separation.

FR:5.5 The CKMS design shall specify all automated provisions for identifying security
violations, whether by individuals performing authorized roles (insiders) or by those with
no authorized role (outsiders).

SP 800-130 August 2013

31

6. Cryptographic Keys and Metadata

6.1 Key Types
In general, cryptographic keys are categorized according to their properties and uses. Key
properties may be public, private, or symmetric4. Keys may also have static (i.e., long
term) or ephemeral (used only for a single session or key management transaction)
properties. Key uses include signature, authentication, encryption/decryption, key
wrapping, RNG (Random Number Generation), master key, key transport, key
agreement, and authorization. [SP 800-57-part1] describes twenty different key types.
Twenty-one key types are shown in Table 1 below (one compound key type in SP 800-
57-part1 is divided into two simple key types in the table). Note that the italicized items
in this paragraph are the actual terms that compose the key type names in the table. A
CKMS may use these or other key types in its design.

Key Type
1) Private Signature Key
2) Public Signature Key
3) Symmetric Authentication Key
4) Private Authentication Key
5) Public Authentication Key
6) Symmetric Data Encryption/Decryption Key
7) Symmetric Key Wrapping Key
8) Symmetric RNG Key
9) Private RNG Key
10) Public RNG Key
11) Symmetric Master Key
12) Private Key Transport Key
13) Public Key Transport Key
14) Symmetric Key Agreement Key
15) Private Static Key Agreement Key
16) Public Static Key Agreement Key
17) Private Ephemeral Key Agreement Key
18) Public Ephemeral Key Agreement Key
19) Symmetric Authorization Key
20) Private Authorization Key
21) Public Authorization Key

Table 1: Key Types

FR: 6.1 The CKMS design shall specify and define each key type used.

4 If it is not indicated in this document whether a key is asymmetric or symmetric, then
either asymmetric or symmetric should be assumed.

SP 800-130 August 2013

32

6.2 Key Metadata
This section lists and describes the metadata that may be associated with keys. Key
metadata is defined as information associated with a particular key that is explicitly
recorded and managed by the CKMS. In this Framework, the key associated with a
particular set of metadata elements is referred to as “the key”.

The metadata that may be appropriate for a trusted association with a key should be
selected by the CKMS designer, based upon a number of factors, including the key type,
the key lifecycle state, and the CKMS Security Policy. A CKMS need not associate all
applicable metadata with a given key, and a CKMS may not associate any metadata with
some or all of the keys. See item u) in Section 6.2.1.

6.2.1 Metadata Elements
The following are typical metadata elements and their descriptions:

a) Key Label: A key label is a text string that provides a human-readable, and
perhaps machine-readable, set of descriptors for the key. Examples of key labels
include: “Root CA Private Key 2009-29” and “Maintenance Secret Key 2005.”

b) Key Identifier: This element is used by the CKMS to select a specific key from a

collection of keys. A key identifier is generally unique in a security domain. For
public and private keys, a key identifier can be a hash value or portion of the hash
value of the public key or can be assigned by the CKMS.

c) Owner Identifier: This element specifies the identifier (or identifiers) of the

entity (or entities) that owns (or own) the key.

d) Key Lifecycle State: A key lifecycle state is one of a set of finite states that
describe the current permitted conditions of a cryptographic key (see Section 6.3).

e) Key Format Specifier: This element is used to specify the format for the key.

This can be accomplished by reference to the structure using object identifiers.
For example, an RSA public key consists of the modulus and a public exponent.
The format specifier should specify the sequence in which these two values are
stored and the format in which each value is encoded. The Internet Engineering
Task Force (IETF) has defined an object identifier for storing different forms of
public keys, such as DSA, DH, RSA, EC, RSAPSS, and RSAOAEP keys. The
object identifiers and related public key structures are defined in the following
Internet RFCs: [RFC 3279], [RFC 4055], and [RFC 5480].

f) Product used to create the Key: This element specifies which cryptographic

product was used to create or generate the key.

g) Cryptographic Algorithm using the Key: This element specifies the
cryptographic algorithm that is intended to use the key. Examples include DSA,
ECDSA, RSA, AES, TDEA, and HMAC-SHA1.

SP 800-130 August 2013

33

h) Schemes or Modes of Operation: This element defines the applicable schemes

or modes of operation for performing a cryptographic function using a key. For
asymmetric algorithms, it may specify the operation of discrete logarithm
algorithms in a mathematical finite field, binary field, or Elliptic Curve (EC) field.
For symmetric algorithms, this field may define the mode(s) of operation that can
be used by the block cipher algorithm when using the key. Examples of modes of
operation are Electronic Code Book (ECB), Cipher Block Chaining (CBC),
Output Feedback Mode (OFB), and Counter with Cipher Block Chaining-
Message Authentication Mode (CCM). For more information, see [SP 800-38A]
through [SP 800-38F].

i) Parameters for the Key: This element specifies the parameters, if applicable, for

a key. For example, a DSA key has the following domain parameters: large prime
(p), small prime (q), and generator (g).

j) Length of the Key: This element specifies the length of the key in bits (or bytes).

Examples include 2048 bits for an RSA modulus, and 256 bits for an elliptic
curve key.

k) Security Strength of the Key/Algorithm Pair: This element is a number

indicating the amount of work (that is, the base 2 logarithm of the number of
operations) that is required to break (i.e., cryptanalyze) the cryptographic
algorithm. For example, for a TDEA key of 168 bits (not including parity bits),
the security strength is specified as 112 bits; for a 2048-bit RSA modulus, the
security strength is specified as 112 bits. The security strength of a key/algorithm
pair may be reduced if a previously unknown attack is discovered.

l) Key Type5: This element identifies the key type. Key types were discussed in

Section 6.1.

m) Appropriate Applications for the Key: This element specifies applications for
which the key may be used. Examples include Kerberos, Signed E-Mail, Trusted
Time Stamp, Code Signing, File Encryption, and IPSEC.

n) Key Security Policy Identifier: This element identifies the security policy

applicable to the key or key type. A Key Security Policy is a set of security
controls that are used to protect the key or key type during the lifecycle of the key
from generation to destruction (see Section 6.7 and [RFC 3647]). A Key Security
Policy is typically represented by an object identifier registered by the CKMS
organization. The Key Security Policy for individual keys or key types is part of,
and should be consistent with, the CKMS Security Policy.

5 Key type also implies key usage, since usage is one of the two factors that define key type.
Thus, the key usage implied by the key type should be consistent with the application of the key.

SP 800-130 August 2013

34

o) Key Access Control List (ACL)6: An access control list identifies the entities

that can access and/or use the keys as constrained by the key and metadata
management functions (see Section 6.7). This Framework does not specify the
access control list structure. The following are examples of such structures: a
Microsoft Windows file/folder access control list consisting of zero or more
access control entries, a Sun File System access control list, and while not a list,
the Unix protection bits. In cases where interoperability is desired, the following
items may require standardization: the syntax and semantics of the separators
among access control entries, the ordering of entity and “access modes” within an
access control entry, the entity identifier, and the designation of bits for different
“access modes”. If required for interoperability, these items should be included in
an appropriately detailed design specification.

p) Key Usage Count: This element indicates the number of times that the key has

been used.

q) Parent Key: This element points to the key from which the key associated with
this metadata is derived. For example, a new key (i.e., the child key) could have
been derived from a TLS master secret (i.e., the parent key) with its metadata.

 This element may have two sub-elements:

i. Key Identifier: The identifier for the parent key (see item b) above).
ii. Nature of the Relationship: This element identifies how the parent key is

related to the child key. An example of the relationship is a mathematical
function that was used to create the child key using the parent key as one
of the inputs. The relationship might be indicated by the identification of
the mathematical function.

r) Key Sensitivity: This element specifies the sensitivity or importance of the key. It

could relate to a risk level (e.g., Low, Moderate, or High) or a classification level
(e.g., Confidential, Secret, or Top Secret)

s) Key Protections7: This element specifies the integrity, confidentiality, and source

authentication protections applied to the key. A public key certificate is an
example of key protection whereby the CA’s digital signature provides both the
integrity protection and source authentication (see [X.509]). A symmetric key and
its hash value encrypted together is an example of confidentiality and integrity
protection. When a key and its metadata are received from an external entity, the

6 An ACL includes identifiers for authorized parties, their access mode or permission or
authorization (such as create, initialize, use, entry, output, update, replace, revoke, delete, etc.),
delegation rights for each access mode, and validity period for each access mode.
7 A key can have multiple types of protection (e.g., integrity and confidentiality). The Framework
permits the use of multiple cryptographic mechanisms for the same security service (e.g., digital
signature and MAC for integrity).

SP 800-130 August 2013

35

protections should be verified before the key and metadata are operationally used.
Generally, a single cryptographic function (e.g., HMAC or digital signature) is
used to provide both integrity protection and source authentication.

This element may have several sub-elements:

i. The mechanism used for integrity protection (e.g., hash value, MAC, or
digital signature),

ii. The mechanism used for confidentiality protection (e.g., key wrapping or
key transport),

iii. The mechanism used for source authentication (e.g., MAC or digital
signature), and

iv. An indication of the protections that are enforced by a particular non-
cryptographic trusted process.

t) Metadata Protections (can be a subset of the key protections or can be

different): This element specifies the mechanisms used to provide integrity,
confidentiality, and source authentication to the associated metadata. Generally,
the same mechanism will be used to protect the key and its metadata, especially if
the key and metadata are transmitted or stored together.

This element may have several sub-elements:

i. The mechanism used for integrity protection (e.g., hash value, MAC, or
digital signature),

ii. The mechanism used for confidentiality protection (e.g., encryption),
iii. The mechanism used for source authentication, and
iv. An indication of the protections that are enforced by a particular non-

cryptographic trusted process.

u) Trusted Association Protections (i.e., how the trusted association of metadata
to the key is protected) (can be part of key protection in item s) above): This
information is implicitly provided if the key and metadata are protected as one
aggregated item using the protection listed in item s) above. Otherwise, the
following should be provided for each trusted association protection:

i. The mechanism used for integrity protection (e.g., hash value, MAC,
digital signature, or trusted process), and

ii. The mechanism used for source authentication (e.g., cryptographic
mechanism or non-cryptographic trusted process).

v) Date-Times: There are several important date-times for the lifecycle state

transitions of a key:
i. The generation date: The date-time that a key was generated,
ii. The association date: The date-time that a key was associated with its

metadata for the first time,
iii. The activation date: The date-time that a key was first used,
iv. The future activation date: The date-time that a key is first to be used,

SP 800-130 August 2013

36

v. The renewal date: The date-time that a public key was renewed and
allowed to be used for a longer period of time, e.g., by generating a new
certificate for the same public key as was provided in an old certificate
(see Section 6.4.7),

vi. The future renewal data: The date-time that a public key is to be renewed
and allowed to be used for a longer period of time (e.g., by generating a
new certificate for the same public key as was provided in an old
certificate),

vii. The date of the last rekey: The date-time that a key was replaced with a
new key that was generated so that it is completely independent of the
key that was replaced,

viii. The future rekey date: The date-time that the key is to be replaced with a
new key that will be generated so that it is completely independent of
the key being replaced,

ix. The date of the last usage of the key: The date-time that the key was last
used.

x. The deactivation date: The date-time that a key was deactivated,
xi. The future deactivation date: The date-time that a key is to be

deactivated,
xii. The expiration date: The date-time that a key’s useful lifetime was

terminated permanently,
xiii. The revocation date: The date-time after which a key was no longer

considered valid,
xiv. The compromise date: The date-time that a key was known or suspected

to have been compromised and was marked for replacement and not
renewal,

xv. The destruction date: The date-time that a key was destroyed, and
xvi. The future destruction date: The date-time that a key is to be destroyed.

w) Revocation Reason: If a key is revoked, this element specifies the reason for the

revocation. Examples include a compromise due to an adversary having the key, a
compromise due to an adversary having the cryptographic module containing the
key, a loss of the key, a loss of the cryptographic module containing the key, a
suspected key compromise, the key owner left the sponsoring organization, and a
key misuse by the owner.

The dates and times used in the above listed metadata elements, as well as various CKMS
transaction dates and times, may be required to be both accurate and from an
authoritative source, such as a Network Time Protocol (NTP) server. In addition, some of
the transactions may require time stamps from a trusted third-party. Trusted third-party
time stamping is described in [RFC 3161] and [SP 800-102].

FR:6.2 For each key type used in the system, the CKMS design shall specify all
metadata elements selected for a trusted association, the circumstances under which the

SP 800-130 August 2013

37

metadata elements are created and associated with the key, and the method of association
(i.e., cryptographic mechanism or trusted process).

FR: 6.3 For each cryptographic mechanism used in the Key Protections metadata
element (item s above), the CKMS design shall specify the following:

i. The cryptographic algorithm: See item g) above.
ii. The parameters for the key: See item i) above.
iii. The key identifier: See item b) above.
iv. The protection value: This element contains the protection value for integrity

protection, confidentiality protection, or source authentication. For example, a
properly implemented MAC or digital signature technique may provide for
integrity protection and/or source authentication.

v. When the protection was applied.
vi. When the protection was verified.

FR:6.4 For each non-cryptographic trusted process used in the Key Protections metadata
element (item s above), the CKMS design shall specify the following:

i. The identifier of the process used to distinguish it from other processes, and
ii. A description of the process or a pointer to a description of the process.

FR:6.5 For each cryptographic mechanism used in the Metadata Protections metadata
element (item t above), the CKMS design shall specify the following:

i. The cryptographic algorithm.
ii. The parameters for the key.
iii. The key identifier.
iv. The protection value (e.g., MAC, digital signature).
v. When the protection was applied.
vi. When the protection was verified.

Generally, the same mechanism will be used for the key and bound metadata, especially
if the key and metadata are bundled together.

FR:6.6 For each non-cryptographic trusted process used in the Metadata Protections
metadata element (item t above), the CKMS design shall specify the following:

i. The identifier that is used to distinguish this process from other processes, and
ii. A description of the process or a pointer to a description of the process.

FR:6.7 For each cryptographic mechanism used in the Trusted Association Protections
metadata element (item u above), the CKMS design shall specify the following:

i. The cryptographic algorithm,
ii. The parameters for the key,
iii. The key identifier,
iv. The protection value (e.g., MAC, digital signature),
v. When the protection was applied, and

SP 800-130 August 2013

38

vi. When the protection was verified.

FR:6.8 For each non-cryptographic trusted process used in the Trusted Association
Protections metadata element (item u above), the CKMS design shall specify the
following:

i. The identifier that is used to distinguish this process from other processes, and
ii. A description of the process or a pointer to a description of the process.

FR:6.9 The CKMS design shall specify the accuracy and precision required for dates and
times used by the system.

FR:6.10 The CKMS design shall specify what authoritative time sources are used to
achieve the required accuracy.

FR:6.11 The CKMS design shall specify how authoritative time sources are used to
achieve the required accuracy8.

FR:6.12 The CKMS design shall specify which dates, times, and functions require a
trusted third-party time stamp.

6.2.2 Required Key and Metadata Information
A CKMS design needs to make certain information clear regarding how keys and
metadata are managed.

FR:6.13 For each key type, the CKMS design shall specify the following information
regarding keys and metadata elements:

a) The key type
b) The cryptoperiod (for static keys)
c) The method of generation

i. The RNG used
ii. A key generation specification (e.g., [FIPS 186] for signature keys, [SP 800-

56A] for Diffie-Hellman key establishment keys)
d) For each metadata element, include

i. The source of the metadata
ii. How the metadata is vetted

e) The method of key establishment
i. The key transport scheme (if used)
ii. The key agreement scheme (if used)
iii. The protocol name (if a named protocol is used)

f) The disclosure protections (e.g., key confidentiality, physical security)
g) The modification protections (e.g., a MAC or a digital signature)

8 For example, the use of an NTP server and an NTP protocol to synchronize with the
authoritative time source.

SP 800-130 August 2013

39

h) The applications that may use the key (e.g., TLS, EFS, S/MIME, IPSec, PKINIT,
SSH, etc.)

i) The applications that are not permitted to use the key
j) The key assurances

i. Symmetric key assurances (e.g., format checks)
• Who obtains the assurance
• The circumstances under which it is obtained
• How the assurance is obtained

ii. Asymmetric key assurances (e.g., assurance of possession and validity)
• Who obtains the assurances
• The circumstances under which the assurance is obtained
• How the assurance is obtained

iii. Domain parameter validity checks
• Who performs the validity check
• The circumstances under which the checking is performed
• How the assurance of domain parameter validity was obtained.

FR:6.14 The CKMS design shall specify all syntax, semantics, and formats of all key
types and their metadata that will be created, stored, transmitted, processed, and
otherwise managed by the CKMS.

6.3 Key Lifecycle States and Transitions
A key may pass through several states between its generation and its destruction. This
section is based on Section 7, Key States and Transitions, from [SP 800-57-part1].
Possible states of a key include: Pre-Activation, Active, Deactivated, Compromised,
Destroyed, Destroyed Compromised, and Revoked. Note that the CKMS designer selects
and defines the key states and transitions that are appropriate for the CKMS and its likely
applications.

FR:6.15 The CKMS design shall specify all the states that the CKMS keys can attain.

FR:6.16 The CKMS design shall specify all transitions between the CKMS key states
and the data (inputs and outputs) involved in making the transitions.

6.4 Key and Metadata Management Functions
The key and metadata management functions described in this section are performed by
the CKMS on keys or metadata for management purposes. The authentication and
authorization of the calling entities is performed by an Access Control System (ACS), as
described in Section 6.7.

A CKMS should provide for the creation, modification, replacement, and destruction of
keys and their metadata. Depending on the function, the input and/or output may have
integrity, source authentication, and/or confidentiality services applied to them.

SP 800-130 August 2013

40

In the case of an input to a function, the function may need to process protections placed
on the input by another entity. For example, for the key-entry function, the entity
providing the key (i.e., the key source9) may have digitally signed the plaintext key and
then encrypted the signed result. Therefore, for this example, the key-entry function will
need to decrypt the input and perform digital signature verification to authenticate the key
source and verify the integrity of the key.

In the case of an output from a function, the function may need to apply security services.
For example, for the key-output function, the invoker of the function may desire to output
a key that is encrypted and then digitally signed. The key-output function would then
apply encryption and digital signature generation to the key as appropriate for the
intended recipient.

FR:6.17 The CKMS design shall specify the key and metadata management functions to
be implemented and supported.

FR:6.18 The CKMS design shall identify the integrity, confidentiality, and source-
authentication services that are applied to each key and metadata management function
parameter implemented in the CKMS.

6.4.1 Generate Key
When a user requires a key, the user should request that the key be generated by the
CKMS. The user may need to specify the type of key and other necessary parameters
(e.g., the name of the key-generation technique), including some metadata that needs to
be associated with the key when requesting this function. The function may return a key
identifier that is a pointer to the key and perhaps its metadata. If the user wishes to
actually know the key value, then the key-output function (see Section 6.4.20) could be
used in some circumstances.

Key-generation techniques typically depend on the specifications of the cryptographic
algorithm paired with the key (see [FIPS 186]). Different algorithms make use of keys
conforming to differing specifications (e.g., lengths and formats). Key generation for
asymmetric algorithms involves the generation of a key pair. The generation of keys
requires the use of a random number generator that is designed for cryptographic
purposes. For example, NIST has published several approved random number generators
(see [SP 800-90A]) and instructions on key generation (see [FIPS 186]).

The key-generation function may also provide for the selection or input of metadata that
is associated with the generated key.

FR:6.19 The CKMS design shall specify the key-generation methods to be used in the
CKMS for each type of key.

9 The source of the key may or may not be the entity using the key-entry function.

SP 800-130 August 2013

41

FR:6.20 The CKMS design shall specify the underlying random number generators that
are used to generate symmetric and private keys.

6.4.2 Register Owner
The initial registration of a security entity (i.e., individual (person), organization, device
or process) and a cryptographic key with metadata is a fundamental requirement of every
CKMS. This requirement is difficult to fully automate while preserving security (i.e.,
protecting from an impersonation threat) and thus, it usually requires human interactions.
There typically exists a registration process in a CKMS that binds each entity’s initial set
of secret, public, or private keys with the entity’s identifier and perhaps other metadata.
The process of binding an owner’s identifiers and keys involves either an initial identity
proofing of the owners or relying on the pre-existing identity of the owner in the CKMS.

FR:6.21 The CKMS design shall specify all the processes involved in owner registration,
including the process for binding keys with the owner’s identifier.

6.4.3 Activate Key
The activation function provides for the transition of a cryptographic key from the pre-
activation state to the active state. This function may automatically activate the key
immediately after generation. Alternatively, this function may generate a date-time
metadata value that indicates when the key becomes active and can be used. A
deactivation date-time may also be established using this function.

FR:6.22 The CKMS design shall specify how each key type is activated and the
circumstances for activating the key.

FR:6.23 For each key type, the CKMS design shall specify requirements for the
notification of key activation, including which parties are notified, how they are notified,
what security services are applied to the notification, and the time-frames for
notification(s)10.

6.4.4 Deactivate Key
This function transitions a key into the deactivated state. A cryptographic key is generally
given a deactivation date and time when it is created and distributed. In some instances,
deactivation may also be based on the number of uses or the amount of data protected.
This deactivation information may be associated with the key as metadata. The period of
time between activation and deactivation is generally considered the cryptoperiod of a
key. This time usually has a maximum value based, in part, on the sensitivity levels of the
data it is protecting and the threats that could be brought against the CKMS (see [SP 800-
57-part1] for further discussion). The cryptoperiod can be shortened, based on the
concerns of the cryptographic officer in charge of the key and data. The CKMS Security

10 For example, notification could be once immediately before activation, or every n units of time
until activation, starting at some time in advance, or with increasing frequency as the activation
time approaches.

SP 800-130 August 2013

42

Policy should state the maximum allowable cryptoperiod of any key type used to protect
the data covered by the policy.

FR: 6.24 The CKMS design shall specify for each key type how deactivation of the key
is determined (e.g., by cryptoperiod, by number of uses, or by amount of data).

FR: 6.25 The CKMS design shall specify how each key type is deactivated (e.g.,
manually or automatically, based on the deactivation date-time, the number of usages, or
the amount of protected data).

FR: 6.26 The CKMS design shall specify how the deactivation date-time for each key
type can be changed11.

FR:6.27 For each key type, the CKMS design shall specify requirements for advance
notification of the deactivation of the key type, including which CKMS supported roles
are notified, how they are notified, what security services are applied to the notification,
and the time-frames for notification(s).

6.4.5 Revoke Key
Key revocation is used in cases where the authorized use of a key needs to be terminated
prior to the established cryptoperiod of that key. A cryptographic key should be revoked
as soon as feasible after it is no longer authorized for use (e.g., the key has been
compromised). Revoking a key includes marking the key as no longer authorized for use
to apply cryptographic protection or to process already protected information. Security
entities that have been, that are, or that will be using the key (i.e., relying parties) need to
be notified that the key has been revoked. This may involve the publication of a
revocation list identifying keys that have been revoked. Other forms of revocation
notification may be supported in key-management systems.

FR:6.28 The CKMS design shall specify when, how, and under what circumstances
revocation is performed and revocation information is made available to the relying
parties.

6.4.6 Suspend and Re-Activate a Key
A key may be temporarily suspended and later re-activated12. Examples of situations that
may warrant suspension, as opposed to irreversible revocation, include: the owner is not
available for an extended period of time, the key has been misused, a possible
compromise is under investigation, or a token containing a key has been misplaced. In

11 For example, over time, the advancements in key exhaustion technology may improve at a
faster rate than expected, or new attacks that lower the bits of security strength provided by the
key and its algorithm may be discovered. Thus, the key-deactivation date may require
modification.
12 Suspension is a temporary deactivation. In other words, while deactivation is generally
irreversible, suspension can be reversed in order to re-activate the key.

SP 800-130 August 2013

43

addition to a security-issue-related revocation (since suspension is nothing but
revocation, albeit reversible), the security of re-activating a suspended key is also critical.

If a suspension is to apply to remote entities holding the key, as well as the local calling
entity, then provisions must be made for notifying the other entities of the suspension and
also the re-activation.

FR:6.29 The CKMS design shall specify how, and under what circumstances, a key is
suspended.

FR:6.30 The CKMS design shall specify how suspension information is made available
to the relying or communicating parties.

FR:6.31 The CKMS design shall specify how, and under what circumstances, a
suspended key is re-activated.

FR:6.32 The CKMS design shall specify how the suspended key is prevented from
performing security services.

FR:6.33 The CKMS design shall specify how re-activation information is made available
to the relying or communicating parties.

6.4.7 Renew a Public Key
Public key certificates contain a public key of an asymmetric key pair (i.e., the subject
key) and a validity period for that certificate. It may be desirable to have a public key
validity period that is shorter than the subject key’s cryptoperiod. This reduces the size of
revocation lists and revocation information, but requires certificates to be issued more
frequently. Renewal establishes a new validity period for an existing subject public key
beyond its previous validity period by issuing a new certificate containing the same
public key with a new validity period. The sum of the renewal periods for a given public
key must not exceed the cryptoperiod of the key.

Advance notification is useful for continuity of operations and mission so that the
appropriate set of new keys and associated metadata can be issued to appropriate parties.
For example, upon the expiration of an entity’s current public key certificate, the entity
may need to request either the renewal of the existing public key or the establishment of a
new public key.

FR:6.34 The CKMS design shall specify how and the conditions under which a public
key can be renewed.

FR:6.35 For each key type, the CKMS design shall specify requirements for advance
notification of the renewal of the key type, including which parties are notified, how they
are notified, what security services are applied to the notification, and the time-frames for
notification(s).

SP 800-130 August 2013

44

6.4.8 Key Derivation or Key Update
When a key is derived from other information, some of which is secret, in a non-
reversible manner, the process is called key derivation. Key derivation is often used in
key establishment protocols to derive a shared key from a common shared secret (see [SP
800-56A], [SP 800-56B], [SP 800-56C], and [SP 800-135]).

Key derivation may also be used to derive a key from another key (see [SP 800-108]) or
from a password (see [SP 800-132]). In the case where a key (e.g., K1) is used to derive
another key (K2), and the derived key (K2) is used to replace the original key (i.e., K1),
then the process is called key update. In the past, keys were merely updated in order to
avoid having to use a key establishment protocol to establish a new key; all entities
sharing the key merely updated the key to form a new key without using any other secret
data. This process of key updating has the possible security exposure that an adversary
who obtains a key (by compromise or cryptanalysis) and knows the update
transformation can update the known key to any of its future updates.

FR:6.36 The CKMS design shall specify all processes used to derive or update keys and
the circumstances under which the keys are derived or updated.

FR:6.37 For each key type, the CKMS design shall specify requirements for advance
notification of the derivation or update of the keys, including which parties are notified,
how they are notified, what security services are applied to the notification, and the time-
frames for notification(s).

6.4.9 Destroy Key and Metadata
Keys and some portion of their metadata should be destroyed beyond recovery when they
are no longer to be used. Destroying a key in a high-security application can be a
complex process, depending on the storage media for the key and the extent of
distribution of key copies. Historically, the secure burning of paper keying material
(paper tape, punched cards, or printed key lists) in a prescribed manner was used. Keys in
electronic storage media may be overwritten with random patterns of zeros and ones.
Magnetic media that has a propensity for retaining low levels of magnetism may be
physically destroyed, degaussed, or over-written with various bit patterns numerous
times. Designers should include provisions for destroying a key in backup storage media
if such media are utilized.

FR:6.38 The CKMS design shall specify how and the circumstances under which keys
are intentionally destroyed and whether the destruction is local to a component or
universal throughout the CKMS.

FR:6.39 For each key type, the CKMS design shall specify requirements for an advance
notification of key destruction, including which parties are notified, how they are
notified, what security services are applied to the notification, and the time-frames for
notification(s).

SP 800-130 August 2013

45

6.4.10 Associate a Key with its Metadata
A cryptographic key may have several metadata elements associated with it. The CKMS
designer must determine which metadata must or can be associated with a key and also
the protection mechanism that provides the association. Depending on the nature of the
information stored in a metadata element, the metadata element may require
confidentiality protection, integrity protection, and source authentication. The association
function uses cryptography or a trusted process to provide this protection.

FR: 6.40 For each key type used, the CKMS design shall specify what metadata is
associated with the key, how the metadata is associated with the key, and the
circumstances under which metadata is associated with the key.

FR: 6.41 For each key type used, the CKMS design shall describe how the following
security services (protections) are applied to the associated metadata: source
authentication, integrity, and confidentiality.

6.4.11 Modify Metadata
The modify metadata function can be used to modify existing writable metadata that is
associated with a key. Metadata that has been associated with a key should not be
modifiable by an unauthorized entity. For example, if the identifier of the key’s owner is
included in the metadata, an unauthorized entity should not be permitted to modify the
key owner identifier or add additional owners. The binding of a key to its metadata can
be achieved using a MAC or a digital signature. The integrity of the key and its metadata
may be determined by verifying the MAC or digital signature.

FR: 6.42 The CKMS design shall specify the circumstances under which associated
metadata is modified.

6.4.12 Delete Metadata
This function deletes metadata (for which delete permission has been granted) associated
with a key. Metadata elements may be deleted as an entire complete group, as individual
elements, or as a specific subset of the elements.

FR: 6.43 The CKMS design shall specify the circumstances under which the metadata
associated with a key is deleted.

FR: 6.44 The CKMS design shall specify the technique used to delete associated
metadata.

6.4.13 List Key Metadata
This function allows an entity to list the metadata elements of a key for which the entity
is authorized. An entity may have multiple keys with associated metadata in storage.
There may be keys for digital signature generation and verification, authentication,
encryption/decryption, data integrity, key establishment, and key storage. Authorization
to use a key does not automatically imply access to every metadata element associated

SP 800-130 August 2013

46

with the key, but it may be impractical to remember all the values of every metadata
element associated with a key. Therefore, the list metadata function may be very useful.

FR:6.45 For each key type, the CKMS design shall specify which metadata can be listed
by authorized entities.

6.4.14 Store Operational Key and Metadata
Operational key and metadata storage involves the moving of keys and/or metadata to a
medium from which the stored data may later be recovered. Keys and metadata should be
physically or cryptographically protected when stored outside of a cryptographic module
(see [SP 800-57-part1]).

FR:6.46 For each key type, the CKMS design shall specify: the circumstances under
which keys of each type and their metadata are stored, where the keys and metadata are
stored, and how the keys and metadata are protected.

6.4.15 Backup of a Key and its Metadata
Key and metadata backup involves the copying of keys and/or metadata to a safe facility
so that it can be recovered if the original (operational) copy is lost, modified, or otherwise
unavailable. Backup copies of keys and metadata may be located in the same or a
different facility than the operational keys/metadata to assure that the keys and metadata
can be recovered when needed, even after a natural or man-made disaster. Keys/metadata
may be backed-up by the owner or a trusted entity.

FR:6.47 The CKMS design shall specify how, where, and the circumstances under
which keys and their metadata are backed up.

FR:6.48 The CKMS design shall specify the security policy for the protection of backed-
up keys/metadata13.

FR:6.49 The CKMS design shall specify how the security policy is implemented during
the key and metadata back-up, e.g., how the confidentiality and multi-party control
requirements are implemented during transport and storage of the backed-up keys and
metadata.

6.4.16 Archive Key and/or Metadata
The archive of keys and/or metadata involves placing keys and/or metadata in a safe,
long-term storage facility so that they can be recovered when needed. The archive
supports the Key and Metadata Retention Policy (see Section 4.3). Archived keys and/or
metadata must be physically or cryptographically protected. Keys used to protect the keys
and/or metadata in an archive are called archive keys. These archive keys will also have
cryptoperiods, and the continued protection provided to the archived keys and/or
metadata needs to be considered when the cryptoperiod of the archive key expires. This

13 For example, two-person control might be required.

SP 800-130 August 2013

47

may include physical protection and/or the generation of a new archive key for the same
or a stronger cryptographic algorithm, and re-encryption of the archived keys and/or
metadata under the new archive key.

Key and metadata archiving usually requires provisions for moving archived keys and/or
metadata to new storage media when the old media are no longer readable because of the
aging of, or technical changes to, the media and media readers. Archived keys and/or
metadata should be recovered from the old storage medium and stored on the new storage
medium; the keys should be destroyed on the old storage medium after the transfer.
When performing key and/or metadata archival or destruction, applicable laws and
regulations must be considered so that the keys and/or metadata are available for the
required period of time.

FR:6.50 The CKMS design shall specify how, where, and the circumstances under
which keys and/or their metadata are archived.

FR:6.51 The CKMS design shall specify the technique for the secure destruction of the
key and/or metadata or the secure destruction of the old storage medium after being
written onto a new storage medium.

FR:6.52 The CKMS design shall specify how keys and/or their metadata are protected
after the cryptoperiod of an archive key expires.

6.4.17 Recover Key and/or Metadata
Key and/or metadata recovery involves obtaining a copy of a key and/or its metadata that
has been previously backed-up, archived, or stored. The key and/or metadata can be
recovered by an authorized entity (e.g., its owner or by a trusted entity) after all the rules
for recovery have been fulfilled and verified. The CKMS Security Policy should state the
conditions under which a key and/or metadata may be recovered.

FR: 6.53 The CKMS design shall specify the CKMS recovery policy for keys and/or
metadata.

FR:6.54 The CKMS design shall specify the mechanisms used to implement and enforce
the recovery policy for keys and/or metadata.

FR:6.55 The CKMS design shall specify how, and the circumstances under which, keys
and/or metadata are recovered from each key database or metadata storage facility.

FR: 6.56 The CKMS design shall specify how keys and/or metadata are protected during
recovery.

6.4.18 Establish Key
Key establishment is the process by which a key is securely shared between two or more
entities. The key may be transported from one entity to another (key transport), or the key

SP 800-130 August 2013

48

may be derived from information shared by the entities (key agreement). The method of
transporting keys or sharing information may be either manual (e.g., sent by courier) or
automated (e.g., sent over the Internet).

FR: 6.57 The CKMS design shall specify how, and the circumstances under which, keys
and their metadata are established.

6.4.19 Enter a Key and Associated Metadata into a Cryptographic Module
The key entry function is used to enter one or more keys and associated metadata into a
cryptographic module in preparation for active use. Keys and metadata may be entered in
plaintext form, in encrypted form, as key splits, in an integrity-protected form (e.g., in a
signed certificate) or any combination thereof.

FR: 6.58 The CKMS design shall specify how, and the circumstances under which, keys
and metadata are entered into a cryptographic module, the form in which they are
entered, and the method used for entry14.

FR: 6.59 The CKMS design shall specify how the integrity and confidentiality (if
necessary) of the entered keys and metadata are protected and verified upon entry.

6.4.20 Output a Key and Associated Metadata from a Cryptographic Module
The key output function outputs one or more keys and associated metadata from a
cryptographic module for external use or storage. Output may be for archive, backup, or
normal, operational purposes. A module that serves as a key generation facility may
output keys for subsequent distribution. Keys and metadata may be output in plaintext
form, in encrypted form, as key splits, in integrity-protected form, or any combination
thereof.

FR: 6.60 The CKMS design shall specify how, and the circumstances under which, keys
and metadata are output from a cryptographic module and the form in which they are
output.

FR:6.61 The CKMS design shall specify how the confidentiality and integrity of the
output keys and metadata are protected while outside of a cryptographic module.

FR: 6.62 If a private key, symmetric key, or confidential metadata is output from the
cryptographic module in plaintext form, the CKMS design shall specify if and how the
calling entity is authenticated before the key and metadata are provided.

6.4.21 Validate Public Key Domain Parameters
This function performs certain validity checks on the public domain parameters of some
public key algorithms. Passing these tests provides assurance that the domain parameters
are arithmetically correct (see [SP 800-89] and [SP 800-56A]).

14 For example, by keyboard entry, key loader, or via automated protocols.

SP 800-130 August 2013

49

FR: 6.63 The CKMS design shall specify how, where, and the circumstances under
which, public key domain parameters are validated.

6.4.22 Validate Public Key
This function performs certain validity checks on a public key to provide some assurance
that it is arithmetically correct. These tests typically depend on the public key algorithm
for which the key is intended, but do not depend on knowledge of the private key (see
[SP 800-89], [SP 800-56A], and [SP 800-56B]). Note that Sections 6.4.22, 6.4.23, and
6.4.28 are related to providing an overall trust scenario for the validation of these keys.

FR: 6.64 The CKMS design shall specify how, where, and the circumstances under
which, public keys are validated.

6.4.23 Validate Public Key Certification Path
This function validates the certification path (also known as a certificate chain), from the
trust anchor of the relying entity to a public key in which the relying entity needs to
establish trust (i.e., the public key of the other entity in a transaction). The validation of
the certification path provides assurance that the subject identity that is given in the
certificate is, in fact, the identity of the owner of the static public key and the holder of
the corresponding static private key (assuming that proof of private key possession was
verified by the certificate authority or some other entity trusted by the relying entity).

FR: 6.65 The CKMS design shall specify how, where, and the circumstances under
which, a key certification path are validated.

6.4.24 Validate Symmetric Key
This function performs tests on the symmetric key and its metadata. For example, tests
may include checking for the proper length and format of the key. This command may
also verify any error detection/correction codes or integrity checks placed upon the key
and/or its metadata.

FR: 6.66 The CKMS design shall specify how, where, and the circumstances under
which, symmetric keys and/or metadata are validated.

6.4.25 Validate Private Key (or Key Pair)
This function performs certain tests on a private key to provide assurance that it meets its
specifications. The test can only be performed by the private-key owner or by a trusted
third-party acting on behalf of the private-key owner. This test may also involve a pair-
wise consistency test that verifies that the private key performs a complementary function
to the public key. For example, in the case of an RSA key pair, applying the private key
to a given input block, followed by applying the public key to the result should always
yield the given input block (see Section 6.4.1 of [SP 800-56B] for more information).

SP 800-130 August 2013

50

FR:6.67 The CKMS design shall specify how, where and the circumstances under
which, private keys or key pairs and/or metadata are validated.

6.4.26 Validate the Possession of a Private Key
This function is used by an entity that receives a public key and wishes to obtain
assurance that the claimed owner of the public key has possession of the corresponding
private key, and is therefore the owner of the key pair. The key-pair owner is typically
required to use the private key in a cryptographic transaction in which another entity uses
the public key in an attempt to verify the possession. For example, the owner may sign
data (e.g., the public key and other information) using the private key before sending it to
the receiver. The receiver uses the received public key to validate the signature on the
received data (see [SP 800-56A], [SP 800-56B], and [SP 800-89]). This function may
also contain the capability for a private-key owner to validate the possession of the
owner’s own private key.

FR: 6.68 The CKMS design shall specify how, where, and the circumstances under
which, possession of private keys and their metadata are validated.

6.4.27 Perform a Cryptographic Function using the Key
The main usage functions are the actual functions that provide the cryptographic
protection to data. These functions may include signature generation, signature
verification, encryption, decryption, key wrapping, key unwrapping, MAC generation,
and MAC verification. They should be performed within a cryptographic module.

FR: 6.69 The CKMS design shall specify all cryptographic functions that are supported
and where they are performed in the CKMS (e.g., CA, host, or end user system).

6.4.28 Manage the Trust Anchor Store
A CKMS may require that certain entities have one or more trusted public keys. These
public keys are also referred to as trust anchors. A trust anchor is used to establish trust in
other public keys that are not otherwise trusted. The trust in these otherwise un-trusted
public keys is established by verifying all signatures in a chain of public key certificates
(termed “certification path” in Section 6.4.23), starting with a trust anchor that is trusted
by the relying entity. Thus, the integrity of trust anchors is critical to the security of the
CKMS. The CKMS typically supports trust anchor management functions, such as
adding, deleting and storing trust anchors. Trust anchor formats are specified in [RFC
5914]. The Secure Trust Anchor Management Protocol (TAMP) is defined in [RFC
5934].

FR: 6.70 The CKMS design shall specify all trust anchor management functions that are
supported (see [RFC 6024]).

FR: 6.71 The CKMS design shall specify how the trust anchors are securely distributed
so that the relying parties can perform source authentication and integrity verification on
those trust anchors.

SP 800-130 August 2013

51

FR: 6.72 The CKMS design shall specify how the trust anchors are managed in relying-
entity systems to ensure that only authorized additions, modifications, and deletions are
made to the relying-entity system’s trust anchor store.

6.5 Cryptographic Key and/or Metadata Security: In Storage
When cryptographic keys are submitted for storage, they are typically submitted with
their metadata. The metadata may include an owner identifier or user access control list.
If any of the metadata is incorrect, then the false information will be perpetuated by the
CKMS system. Therefore, a CKMS storage system should verify the authorization of the
submitting entity and the integrity of the submitted data before any data is stored15.
When cryptographic keys are stored, they require protection. Symmetric keys and private
keys require confidentiality protection and access control. All keys require integrity
protection. For confidentiality protection, cryptography, computer security, and/or
physical security can be employed. If symmetric key cryptography is used for key
confidentiality, then there often exists a symmetric key wrapping key that is used to
encrypt and decrypt the stored keys and confidential metadata. At the top level in the key
encrypting key hierarchy, there typically is a key that must be physically protected.

If asymmetric key cryptography is used for key confidentiality, then a public key could
be used to encrypt stored keys. The corresponding private key that is used to decrypt the
keys must be protected in some manner, e.g., using physical security and key splitting
(see Section 6.7.5), that usually does not involve encryption.

All stored keys require integrity protection because a garbled key will not correctly
perform its intended function and may compromise another key under some
circumstances. Physical security can provide integrity protection for keys, but additional
methods are frequently used. An error detection code can detect an unintentional garble
in a key, and an error correction code can correct certain garbles. However, if a key could
be intentionally garbled, then a cryptographic integrity check like a MAC or digital
signature should be implemented for error detection. If an uncorrectable garble is
detected, the garbled key should not be used. When public keys are contained within a
certificate, they are provided integrity protection by means of the digital signature on the
certificate. If public keys are stored outside of their certificate, then their integrity needs
to be protected by some other means.

A CKMS should only allow authorized users to have access to stored keys. Thus, a
CKMS should have some type of access control system (ACS) (see Section 6.7.1). The
ACS may be as simple as requiring a password or cryptographic key from the authorized
user of the key, and/or it may make use of biometric authentication techniques.

15 It is also a good practice to verify the integrity of keys and metadata immediately upon access
and before operational use.

SP 800-130 August 2013

52

A key may be garbled, lost, or destroyed to the extent that it cannot be reconstructed by
error correction codes. If the key is a symmetric key or a private key, this could result in
the loss of the data protected by the key. A CKMS should employ methods for backing-
up, archiving, and recovering keys as necessary to provide for the recovery of valuable
data. For example, Appendix B of [SP 800-57-part1] provides guidance on recovery
procedures for various key types.

A garble in key metadata could result in the misuse of the key or the denial of service.
Therefore, metadata may also require backup, archiving, and recovery.

FR: 6.73 The CKMS design shall specify the methods used to authenticate the identity
and verify the authorization of the entity submitting keys and/or metadata for storage.

FR: 6.74 The CKMS design shall specify the methods used to verify the integrity of keys
and/or metadata submitted for storage.

FR: 6.75 The CKMS design shall specify the methods used to protect the confidentiality
of symmetric and private stored keys and metadata.

FR: 6.76 If a key wrapping key (or key pair) is used to protect stored keys, then the
CKMS design shall specify the methods used to protect the key wrapping key (or key
pair) and control its use.

FR: 6.77 The CKMS design shall specify the methods used to protect the integrity of
stored keys and metadata.

FR: 6.78 The CKMS design shall specify how access to stored keys is controlled.

FR: 6.79 The CKMS design shall specify the techniques used for correcting or
recovering all stored keys.

6.6 Cryptographic Key and Metadata Security: During Key Establishment
Keys and metadata can be established between entities wishing to communicate using
key transport or key agreement methods. These methods are typically used to establish
keys over electronic communications networks, but they could also be used to provide
extra security (beyond physical protection) when keys are manually distributed. When
keys are transported, one entity generates the key to be shared, and the key and possibly
its metadata are distributed to the other entity. When keys are agreed upon, both entities
contribute information that is used to derive a shared key. Metadata may be transported
under the protection of the shared key. [SP 800-56A] and [SP 800-56B] specify
cryptographic schemes for key establishment.

6.6.1 Key Transport
When cryptographic keys and metadata are transported (distributed) from one entity (the
sender) to another (the intended receiver), they should be protected. Symmetric keys and

SP 800-130 August 2013

53

private keys require confidentiality protection and access control. For confidentiality
protection, either physical security or cryptography is used. A manually distributed key
could be physically protected by a trusted courier, or a physically protected channel could
be used. Very often, the keys are sent electronically over networks that are susceptible to
data eavesdropping and modification. If cryptography is used to protect the
confidentiality of symmetric and private keys during transport, then a key establishment
technique involving either a symmetric key wrapping key or one or more asymmetric
transport key pairs is used. These wrapping and transport keys also should be protected
by the end entities involved in the transport.

All transported keys require integrity protection because a garbled key will not correctly
perform its intended function, and attacker-controlled key garbles could result in spoofing
or cryptanalytic attacks. Thus, detecting garbled keys prior to their use improves the
security and reliability of the system. Physical security can provide integrity protection
for keys, but often other methods are used, due to the lack of physical protection of
electronic data on typical networks. An error detection code can detect an unintentional
garble to a key, and an error correction code can correct certain garbles. However, if a
key could be intentionally garbled, then a cryptographic integrity check, like a MAC or
digital signature, should be used for error detection. If an uncorrectable garble is detected,
a new or corrected key should be established before use. When public keys are contained
within a certificate, they are provided integrity protection by the digital signature on the
certificate.

The receiver of a transported key desires assurance that the key came from the expected
authorized key sender. When transported using automated methods, this assurance is
typically provided by the use of a cryptographic mechanism that authenticates the identity
of the sender to the receiver. When a key is transported manually, this assurance may be
provided by the authentication of the trusted courier who transports the key.

FR: 6.80 The CKMS design shall specify the methods used to protect the confidentiality
of symmetric and private keys during their transport.

FR: 6.81 The CKMS design shall specify the methods used to protect the integrity of
transported keys and how the keys can be reconstructed or replaced after detecting errors.

FR: 6.82 The CKMS design shall specify how the identity of the key sender is
authenticated to the receiver of transported keying material.

6.6.2 Key Agreement
Two entities, working together, can create and agree on a cryptographic key without the
key being transported from one to the other. Each entity supplies some information that is
used to derive a common key, but when secure key agreement schemes are used, an
eavesdropper obtaining this information is not able to determine the agreed-upon key.
Cryptographic algorithms employing key agreement keys are used by each entity.

SP 800-130 August 2013

54

Each entity participating in a key agreement process typically needs assurance as to the
identity of the other entity. This assurance is often provided by the key agreement
protocol.

FR: 6.83 The CKMS design shall specify each key agreement scheme supported by the
CKMS.

FR: 6.84 The CKMS design shall specify how each entity participating in a key
agreement is authenticated.

6.6.3 Key Confirmation
When keys are established between two entities, each entity may wish to have
confirmation that the other entity did, in fact, establish the correct key. Key confirmation
schemes are used to provide this capability. [SP 800-56A] and [SP 800-56B] specify key
confirmation schemes for use in Federal CKMS. Other methods may also be appropriate.

FR: 6.85 The CKMS design shall specify each key confirmation method used to confirm
that the correct key was established with the other entity.

FR: 6.86 The CKMS design shall specify the circumstances under which each key
confirmation is performed.

6.6.4 Key Establishment Protocols
Several automated protocols have been developed for the provision of cryptographic keys
for both storage and transmission. Often, these protocols are designed for a particular
application or set of applications. Some well-known key establishment protocols include:

a) Internet Key Exchange (IKE)
b) Transport Layer Security (TLS)
c) Secure/Multipart Internet Mail Extensions (S/MIME)
d) Kerberos
e) Over-The-Air-Rekeying (OTAR) Key Management Messages
f) Domain Name System Security Extensions (DNSSEC)
g) Secure Shell (SSH)

A high-level overview of items a) through f) can be found in [SP 800-57-part3], along
with guidance as to which cryptographic options are recommended for U.S. Government
use. For Secure Shell information, see [RFC 4251].

FR: 6.87 The CKMS design shall specify all the protocols that are employed by the
CKMS for key establishment and storage purposes.

6.7 Restricting Access to Key and Metadata Management Functions
This section describes how access to the key and metadata management functions may be
controlled. The requesting entity may be authenticated, and human exposure to keys and
other sensitive metadata may be prevented or severely restricted.

SP 800-130 August 2013

55

6.7.1 The Access Control System (ACS)
The security of a CKMS depends on the proper sequence and execution of the key and
metadata management functions described in Section 6.4. The execution of these
functions may be driven by time, an event, an entity’s request, or some combination of
these options. An access control system is necessary to assure that key and metadata
management functions are only performed in response to requests (calls) by authorized
entities16 and that all applicable constraints are met17. For example, the recover key
function (see Section 6.4.17) may be restricted to the cryptographic officer role, and input
parameters may be verified to be within specified bounds and have specified formats.

The Access Control System works in conjunction with cryptographic modules to control
access to sensitive keys and metadata. An Access Control System (ACS) protects keys by
ensuring that only authorized entities are permitted to execute key and metadata
management functions. In addition, administrative access is typically logged and audited
for personal accountability. An ACS could be very simple; for example, any user
submitting an appropriate identifier and password might be authorized to perform any
key management function with any key, or the ACS may be much more complex.

Figure 10 illustrates the relationships between the calling entity, the Access Control
System, protected memory, and the cryptographic module. These devices may be
collocated, or they may be connected by a secure channel as shown in the figure. A
calling entity makes CKMS function calls that are serviced by the ACS. The ACS makes
use of protected memory and a cryptographic module to authenticate the calling entity. If
the authentication is successful, and the entity is properly authorized, then the function is
performed by making cryptographic service requests to the cryptographic module.
Finally, the response is then passed back to the calling entity.

Additional details of a sample key management function operation are shown in Figure
11. A function call consisting of the calling entity’s identifier, the calling entity’s
authenticator, the function name, and the key identifier is presented to the ACS. The
entity is first authenticated. Then the entity’s authorization to exercise the command is
verified by checking that the entity’s ID is in the access control list (located in the key
metadata) for the key and the function. If the ACS determines that the function should not
be permitted, then it returns a function-denied indicator. If, however, the function is
permitted for the authenticated entity using the key and metadata, then the ACS notifies
the function logic to perform the requested operation. The function logic may call upon
the cryptographic module to encrypt, decrypt, sign, verify or compute a MAC, as
necessary. Finally, the response to the function call is provided to the calling entity.

16 The authorization of an entity is determined after the identity (or role) of the entity is
authenticated. The identity (or role) is verified as approved to execute the function.
17 Constraints are limitations that are placed upon the input to and use of the function to help
ensure correct and secure operation.

SP 800-130 August 2013

56

ACS
Calling
Entity

Cryptographic
module

Protected
Storage

Secure Channel

Function Calls
and

Responses

Crypto Service Requests
and

Responses

Figure 10: Management Function Access Control

The ACS makes the decision to perform the requested function or not. This decision is
primarily based on the authenticated identity (or role) of the calling entity, the
authorizations of the entity, the security policies of the CKMS, the function, the key, and
its metadata. The metadata of a key may play a critical role in determining the controls
that are to be enforced. For example, an organization may decide that multiple users will
be permitted to use a shared key to encrypt and decrypt a particular file, while another
file can be decrypted only by a single user. The CKMS policies should support and
enforce the information management policies of the managing organization. Therefore, it
is highly desirable that a CKMS access control system be flexible enough to
accommodate the requirements of the CKMS Security Policy.

SP 800-130 August 2013

57

KeyManagementFunctionCall:
entity ID
entity authenticator
function name
key identifier KI

Response:
function output or
function denied

Entity IDs and
Passwords

Key Management
Functions

Keys and
Metadata

ACS

ID1, PW1
ID2, PW2
.
.
.
IDn, PWn

Sym enc
Sym dec
SK sign
PK verify
Com HMAC
Verify HMAC...

KI1, K1, M1
KI2, K2, M2
KI3, K3, M3
.
.
.
KIi, Ki, Mi

CryptoServiceRequest:
encrypt
decrypt
sign
verify
HMAC

Figure 11: Sample Key Management Function Control Logic

FR: 6.88 The CKMS design shall specify the topology of the CKMS by indicating the
locations of the entities, the ACS, the function logic, and the connections between them.

FR: 6.89 The CKMS design shall specify the constraints on the key management
functions that are implemented to assure proper operation.

FR: 6.90 The CKMS design shall specify how access to the key management functions
is restricted to authorized entities.

FR: 6.91 The CKMS design shall specify the ACS and its policy for controlling access to
key management functions.

FR: 6.92 The CKMS design shall specify at a minimum:

a) The granularity of the entities (e.g., person, device, organization),
b) If and how entities are identified,
c) If and how entities are authenticated,
d) If and how the entity authorizations are verified, and
e) The access control on each key management function.

FR: 6.93 The CKMS design shall specify the capabilities of its ACS to accommodate,
implement, and enforce the CKMS Security Policy.

SP 800-130 August 2013

58

6.7.2 Restricting Cryptographic-Module Entry and Output of Plaintext Keys
A well-designed CKMS will minimize the access of humans to plaintext keys. The
primary need for keys to be in plaintext is when they are performing cryptographic
functions within a cryptographic module. These modules usually provide physical
protection to the plaintext keys so that they will not be exposed. The module may
generate the keys and perform cryptographic functions on behalf of humans, and the
humans need never see a plaintext symmetric or private key. This feature makes a CKMS
using such modules more transparent and more secure. For example, a private key
transport key could be generated within the module and never be allowed to leave the
module. Keys that are output from the module could be transported (in encrypted form)
using a key transport scheme. A symmetric encryption/decryption key could be encrypted
and transported using the public key of the receiving entity. A key may be securely stored
outside of the module when encrypted under a public key storage key or symmetric key
wrapping key. Sometimes, plaintext key output is permitted to support legacy systems. In
such cases, multi-party control, discussed in Section 6.7.4 below, should be considered.

Requirements for the entry and output of keys into and from a cryptographic module are
specified in Section 6.4.19 and Section 6.4.20, respectively.

FR: 6.94 The CKMS design shall specify the circumstances under which plaintext secret
or plaintext private keys are entered into or output from a cryptographic module.

FR: 6.95 If plaintext secret or plaintext private keys are entered into or output from any
cryptographic module, then the CKMS design shall specify how the plaintext keys are
protected and controlled outside of the cryptographic module.

FR: 6.96 If plaintext secret or plaintext private keys are entered into or output from any
cryptographic module, then the CKMS design shall specify how such actions are audited.

6.7.3 Controlling Human Input
If a key management function requires the human input of keys or sensitive metadata,
then there is a dependence on the human for the accuracy and perhaps the security of the
input. In addition, there could be a dependency on the human to enter the input at the
proper time or when the proper event occurs. In this case, the issue arises as to what
action the system should take if the human input is not provided. If such functions can be
performed automatically by the CKMS when they are necessary, the system becomes
more transparent to the user and possibly more secure.

FR: 6.97 For each key and metadata management function, the CKMS design shall
specify all human input parameters, their formats, and the actions to be taken by the
CKMS if they are not provided.

6.7.4 Multiparty Control
Certain key management functions could require multiple cooperating entities to perform
the function. This multiparty control could be enforced by requiring k of n entities to

SP 800-130 August 2013

59

authenticate to and be authorized by the function’s access control system before the
function is performed. Multiparty controls should be used for highly sensitive functions.
For example, a highly sensitive function should require that two or more individuals be
logged on and authenticated to perform the function.

FR: 6.98 The CKMS design shall specify all functions that require multiparty control,
specifying k and n for each function.

FR: 6.99 For each multiparty function, the CKMS design shall cite or specify any known
rationale (logic, mathematics) as to why any k of the n entities can enable the desired
function, but k−1 of the entities cannot.

6.7.5 Key Splitting
Key splitting is a technique for multiparty control. When a highly sensitive key is
required, n key splits are generated so that any k of the key splits can be used to form the
key, but any k−1 key splits provide no knowledge of the key. Each of the n key splits is
then assigned to one of n trusted entities so that the key cannot be formed unless k of the
entities agree to take part. If any k−1 of the entities had their key splits compromised, the
key could still not be reconstructed by an attacker having all the k−1 key splits. Thus, the
security of the key is distributed. Split knowledge procedures have been used to establish
root or master keys that provide protection to many other keys and whose compromise
would result in a major disaster. These key splits (rather than the plaintext key resulting
from combining the key splits) are often entered into, or output from, the CKMS in
plaintext form for backup purposes.

FR:6.100 The CKMS design shall specify all keys that are managed using key splitting
techniques and shall specify n and k for each technique.

FR:6.101 For each (k, n) key splitting technique used, the CKMS design shall specify
how key splitting is done, and any known rationale (logic, mathematics) as to why any k
of the n key splits can form the key, but k−1 of the key splits provide no information
about the key.

6.8 Compromise Recovery
In an ideal situation, the CKMS would protect all keys and sensitive metadata so that they
are never compromised or modified by unauthorized parties. However, since it is difficult
or even impossible to design a perfect CKMS that prevents all potential security
problems, a CKMS should be designed to detect compromises and unauthorized
modifications, to mitigate their undesirable effects, to alert the appropriate parties of
compromises, and to recover (or help recover) to a secure state once a compromise or
unauthorized modification is discovered. This section addresses how the recovery from a
compromise should occur.

When a CKMS compromise is detected

a) The compromise should be evaluated to determine its cause and scope,

SP 800-130 August 2013

60

b) Compromise-mitigation measures should be instituted to minimize key and/or
metadata exposure,

c) Appropriate corrective measures should be instituted to prevent the reoccurrence
of the compromise, and

d) The CKMS should be returned to a secure operating state.

6.8.1 Key Compromise
Depending on the key type and key usage, the compromise of a key could result in

a) Loss of confidentiality,
b) Loss of integrity,
c) Loss of authentication,
d) Loss of non-repudiation, or
e) Some combination of these losses.

Note that the loss of a security service provided to a key is likely to result in a loss of the
same and potentially other security services for data protected by the key. For example, a
loss of the integrity for a public key transport key could impact the confidentiality of the
data encryption key protected by the public key and that, in turn, could compromise the
confidentiality of the data protected by the data encryption key. (More specifically, if a
public RSA key is changed to have the value 1 modulo n, then any data encrypted by that
altered key would be compromised.)

A key compromise could be undetected, detected or suspected. A CKMS should limit the
exposure of undetected key compromises by establishing a cryptoperiod or usage limit
for each key that it uses18. At the end of each cryptoperiod, a new key could be
established to replace the old key. When a new key is established and activated to protect
new data, the old key should no longer be used to protect the new data. Thus, unless the
compromise recurs with the new key, the new data will be protected. Of course, the old
data that was protected with the old key could have been compromised, but the extent of
the compromise is limited, as long as the old key was not used to protect the new key
(e.g., the old key was not used to protect the new key during key transport). If a key
compromise is detected, then the compromised key and other keys whose security
depends upon the security of the compromised key should be replaced as soon as
possible. Since the compromise of a key may result in the compromise of many other
keys that it protects, it is important to design a CKMS to minimize the impact of key
compromise. [SP 800-57-part1] provides guidance as to appropriate cryptoperiods for
various key types.

If a symmetric key wrapping key, a private key transport key, or a private key agreement
key is compromised, then transported or agreed-upon keys might be compromised as
well. If the compromise is undetected, the compromise of additional keys might continue
indefinitely. Some protocols are designed to prevent or mitigate such attacks. However it

18 The usage of keys may be limited based on a criterion such as the amount of data processed
using the key or the number of times the algorithm was initialized using the key.

SP 800-130 August 2013

61

is generally considered a good idea to keep the cryptoperiods of the symmetric key
wrapping, key transport, and key agreement keys to the minimum practical period of
time.

If a key derivation key or master key is compromised, then any key derived from the key
derivation or master key could also be compromised. Therefore, key derivation and
master keys should also be changed on a periodic basis.

FR: 6.102 The CKMS design shall specify the range of acceptable cryptoperiods or
usage limits of each type of key used by the system.

FR:6.103 For each key, a CKMS design shall specify the other key types that depend on
the key for their security and how those dependent keys are to be replaced in the event of
a compromise of the initial key.

FR: 6.104 The CKMS design shall specify the means by which other compromised keys
can be identified when a key is compromised. For example, when a key derivation key is
compromised, how are the derived keys determined?

6.8.2 Metadata Compromise
Depending on the metadata element and how it is used, the compromise of a metadata
element could result in the compromise of a key or the data protected by a key. For
example, a metadata element of a symmetric encryption/decryption key could be a list of
identities corresponding to the legitimate users of the key. The Access Control System
verifies the authenticated identity of the user against the metadata element to determine
whether the user is permitted to exercise the decrypt function and thus obtain plaintext
data. If the metadata element could be modified to add an unauthorized user to the list of
authorized users, then the encrypted data could be compromised. If different keys have
common metadata elements, then the compromise of one metadata element could
compromise the data protected by each of the keys. Metadata elements that are sensitive
to unauthorized modification should be cryptographically bound to their associated keys
so that the integrity of the metadata can be easily verified.

FR: 6.105 For each key type employed, the CKMS design shall specify which metadata
elements are sensitive to compromise (confidentiality, integrity, or source).

FR: 6.106 The CKMS design shall specify the potential security consequences, given the
compromise (confidentiality, integrity or source) of each sensitive metadata element of a
key.

FR: 6.107 The CKMS design shall specify how each sensitive metadata element
compromise can be remedied.

SP 800-130 August 2013

62

6.8.3 Key and Metadata Revocation
Keys are revoked for a number of reasons, including key compromise and the termination
of an employee or the employee’s role within an organization. A CKMS should have the
ability to rapidly replace keys (both asymmetric and symmetric) and the ability to notify
the relying parties (those who make use of the key) of compromise/revocation.

Compromised Key Lists (CKLs), Certificate Revocation Lists (CRLs) (see [RFC 5280]),
White Lists, Query White Lists, and the Online Certificate Status Protocol (OCSP) (see
[RFC 6960]) are examples of mechanisms in use for the promulgation of key revocation
information to the relying entities. Each mechanism has its benefits and drawbacks. For
example, CRLs and CKLs have problems with growing very large and becoming out of
date (i.e., stale). Growth adversely impacts communication, computing, and storage
requirements. The growth problems for the end entity can be mitigated by partitioning the
revocation information into smaller chunks, each chunk handling fewer keys. Staleness
cannot be fully eliminated, but can be mitigated by issuing lists more frequently. Note
that in some instances, more than one revocation mechanism can be used to meet the
security requirements and limitations of the relying parties.

Key revocation mechanisms should consider:

a) Relying entity requirements for the timeliness of revocation information,
b) Relying entity computing and communication limitations, and
c) Infrastructure cost considerations.

FR:6.108 A CKMS design shall specify the key revocation mechanism(s) and associated
relying entity notification mechanism(s) used or available for use.

6.8.4 Cryptographic Module Compromise
Since a cryptographic module contains plaintext keys at some point in time, the
compromise of the module has the potential to compromise the symmetric and private
keys contained within the module (see Section 8.4). This could lead to the loss of
confidentiality, the loss of integrity, or the loss of the ability to authenticate, as described
in Section 6.8.1 above. Cryptographic modules can be compromised either physically
(i.e., obtaining direct access to the keys within the module) or by non-invasive methods
so that knowledge of the keys within the module is obtained by some external action. To
provide physical protection, modules should operate in a space where unauthorized
access is not permitted or where unauthorized access is quickly detected before a serious
compromise occurs. Some modules provide this protection at their cryptographic
boundary, but larger boundaries may also be involved. See [FIPS 140] for more
information on the physical protection of a cryptographic module’s contents. If access to
the contents of a cryptographic module is permitted, then an access control system may
be required to ensure that only authorized parties succeed.

Following an actual or suspected cryptographic module compromise, a secure state of the
module should be re-established. The actions required to return to this state are
collectively called recovery. Recovery sometimes requires the replacement of internal

SP 800-130 August 2013

63

hardware and/or software of the module. The module should be returned to a secure state
before the module is returned to normal operation. Following repair or replacement, a
module must be tested for its operational capability, as well as its security status.

To provide protection against non-invasive attacks on a cryptographic module, either the
use of the module should be restricted to only trusted users, or the module should be
designed to prevent this specific type of attack. In the first case, there is always the threat
that a module will be lost or stolen or that a trusted user will become dishonest. In the
second case, it can become very costly to protect against every possible type of non-
invasive attack. An attacker might determine information about a cryptographic key used
by the module by examining the detailed power consumption patterns of the module
during the cryptographic processing. Other potential non-invasive attacks are based on
carefully analyzing the amount of time certain cryptographic functions take to execute, or
the emanations given off by the module during its normal operation.

FR:6.109 The CKMS design shall specify how physical and logical access to the
cryptographic module contents is restricted to authorized entities.

FR:6.110 The CKMS design shall specify the approach to be used to recover from a
cryptographic module compromise.

FR:6.111 The CKMS design shall describe what non-invasive attacks are mitigated by
the cryptographic modules used by the system and provide a description of how the
mitigation is performed.

FR:6.112 The CKMS design shall identify any cryptographic modules that are
vulnerable to non-invasive attacks.

FR:6.113 The CKMS design shall provide the rationale for accepting the vulnerabilities
caused by possible non-invasive attacks.

6.8.5 Computer System Compromise Recovery
The unauthorized modification of CKMS software or major portions of a computer
operating system can be detected using tools that run on a separate secure platform and
monitor any modification to a file, changes to the hash value of a file’s contents, or
changes to a file’s attributes (e.g., who the owner is, or who is on the ACL) (see Section
8.2.4). Alternatively, a layered system of protections is often built into a CKMS. When
protective mechanisms are built into the system, they need to be protected from the same
threats as the system itself. When critical files undergo unauthorized modifications that
are detected by the monitoring utility or indicated in the event log, these files should be
replaced using known valid and secure files located in secure storage.

If pervasive, unauthorized changes to software are made, the software should be
recovered as described in Section 10.5.

SP 800-130 August 2013

64

FR:6.114 The CKMS design shall specify the mechanisms used to detect unauthorized
modifications to the CKMS system hardware, software and data.

FR:6.115 The CKMS design shall specify how the CKMS recovers from unauthorized
modifications to the CKMS system hardware, software and data.

6.8.6 Network Security Controls and Compromise Recovery
The compromise of network security controls that provide protection to the CKMS could
result in the compromise of the CKMS itself. The scope of network security controls
includes boundary devices, such as a firewall, a VPN, an intrusion detection system, and
an intrusion protection system. The scope of network security controls excludes
cryptographic functions, cryptographic protocols, and cryptographic services, except
when used for the operation of the aforementioned network security control devices.

The following are some of the examples of compromises of network security controls:

a) The physical compromise of a network security control device,
b) A compromise of one or more cryptographic keys used by a network security

control device,
c) A compromise of one or more keys used to administer the network security

control device,
d) A change in the network architecture resulting in a compromise (e.g., someone

connecting a VPN-connected workstation to an unsecure network and the VPN
workstation being used to attack the Intranet),

e) A compromise of a privileged user password (e.g., a system administrator’s
password),

f) A compromise of a platform operating system,
g) A compromise of a network security application (e.g., a firewall, IDS, etc.), and
h) A compromise due to a new attack on a protocol.

If physical security is compromised, the device should be replaced with a new device and
physical security controls should be reviewed, repaired, and enhanced, as appropriate.

If device or administration keys are compromised, the keys should be replaced. An
assessment should be conducted to determine the cause of the compromise, the extent of
the damage, and corrective actions should be taken. In the unlikely event of the security
strength of the key being an issue, the key sizes may need to be increased and/or more
secure cryptographic algorithms may need to be used.

If the network architecture assumptions are violated, the cause of the violation should be
reviewed, and appropriate actions should be taken.

Compromised network devices should be restored to a secure state before normal
operation is continued.

SP 800-130 August 2013

65

If passwords are compromised, the passwords should be replaced. The users may require
further training in selecting the password, in understanding password entropy, in
changing passwords frequently, and in maintaining the confidentiality of written-down
passwords. An examination should also be made of the authentication protocols to
determine if password sniffing, online dictionary attacks or offline dictionary attacks are
feasible.

If the platform operating system is compromised, one or more of the following actions
should be considered and appropriate corrective measures taken:

a) Make sure that all the latest operating system security patches are installed,
b) Ask the operating system vendor if there is a patch for the compromise, or
c) Determine if a device configuration change or the blocking of some protocols will

prevent future attacks of the same nature as the one that caused the compromise.

If the network security application is compromised, one or more of the following actions
should be considered, and appropriate corrective measures should be taken:

a) Make sure that all the latest network security patches are installed,
b) Ask the application vendor if there is a patch for the compromise, or
c) Determine if a device change, an application configuration change, or the

blocking of certain protocols will prevent future attacks that allowed or caused the
compromise.

If the compromise is due to an inadequate network security protocol, one or more of the
following actions should be considered, and appropriate corrective measures should be
taken:

a) Ask the network security application vendor if there is a patch for the
compromise, or

b) Determine if a device configuration change or the blocking of certain protocols
will prevent future attacks of the same nature as the one that caused the
compromise.

In all of these situations, the incident should be fully investigated to determine what other
systems and keys may have been compromised due to a compromise of network security
controls. This damage assessment could lead to additional compromise declarations and
additional compromise recovery procedures.

FR:6.116 The CKMS design shall specify how to recover from the compromise of the
network security control used by the system. Specifically,

a) The CKMS design shall specify the compromise scenarios considered for each
network security control device,

b) The CKMS design shall specify which of the mitigation techniques specified in
this section are to be employed for each envisioned compromise scenario, and

c) The CKMS design shall specify any additional or alternative mitigation
techniques that are to be employed.

SP 800-130 August 2013

66

6.8.7 Personnel Security Compromise Recovery
The humans who are responsible for the correct and secure operation of a CKMS often
have the capability to compromise its security. However, a CKMS can be designed with
its own capabilities to minimize the likelihood of human compromises, detect the
compromises, minimize the negative consequences of the compromises, and efficiently
recover from the compromises.

A CKMS should be designed to:

a) Minimize the ability of humans to cause security failures,
b) Minimize the ability of humans to hide their actions that caused security failures,
c) Help determine who or what caused the security failure (for example by

maintaining audit records), and
d) Mitigate the negative consequences of the failure.

Any detected security failure should result in the initiation of recovery procedures based
upon the Information Security Policy and the CKMS capabilities.

Typical responses include:

e) The complete shut-down of the system,
f) The activation of a backup facility and system with new keys,
g) The notification of current and potential users of the possible security failure, or
h) The flagging of the keys that were compromised.

In addition to the above responses, failures involving personnel compromise could vary
from administrative reprimands, to removal from the role or position and legal action
involving civil or criminal courts.

FR:6.117 The CKMS design shall specify any personnel compromise detection features
that are provided for each supported role.

FR: 6.118 The CKMS design shall specify any personnel compromise minimization
features that are provided for each supported role.

FR:6.119 The CKMS design shall specify the CKMS compromise recovery capabilities
that are provided for each supported role.

6.8.8 Physical Security Compromise Recovery
The physical security of a cryptographic module is discussed in Section 6.8.4, and the
general compromise of keys and metadata is discussed in Section 6.8.1 and Section 6.8.2,
respectively. However a physical security breach of a CKMS could involve compromises
other than the compromise of keys or cryptographic modules. If security-related logic
resides outside of the CKMS cryptographic modules, then the integrity of that logic also
should be protected. Typically, techniques similar to those used by the cryptographic
module are employed. Physical protection can be provided that prevents the potential
attacker from gaining physical access to the components and devices. Alternatively,

SP 800-130 August 2013

67

detection mechanisms could be used to detect an unauthorized access and then take some
defensive action. For example, a detected unauthorized access could sound an alarm or
send an alert to the security officer. Often, a combination of prevention and detection
measures is used.

Once security is breached, the integrity of the entire breached area should be suspect. If
the CKMS detects a breach, it should inform the appropriate entity about the breach, as
specified in the CKMS Security Policy, so that mitigation actions can be taken. In
addition, it might not be sufficient to replace all sensitive data within the breached area,
because the attacker could have modified or added to the logic within the area so that the
new keys and sensitive information could also be compromised in the future.

FR:6.120 The CKMS design shall specify how all CKMS components and devices are
protected from unauthorized physical access.

FR:6.121 The CKMS design shall specify how the CKMS detects unauthorized physical
access.

FR:6.122 The CKMS design shall specify how the CKMS recovers from unauthorized
physical access to components and devices other than cryptographic modules.

FR:6.123 The CKMS design shall specify the entities that are automatically notified if a
physical security breach of any CKMS component or device is detected by the CKMS.

FR:6.124 The CKMS design shall specify how breached areas can be re-established to a
secure state.

7. Interoperability and Transitioning
Interoperability is the ability of diverse systems to communicate and work together (i.e.,
interoperate)19. A CKMS may interoperate with an application or a peer CKMS.
Interoperability can only be achieved by having a detailed specification of the interfaces
to systems with which the CKMS intends to interoperate. This inherently includes the
following:

a) Common interfaces and protocols, i.e., the syntax and semantics of interfaces that
invoke functions and services from one CKMS entity to another CKMS entity are
the same for interoperating systems,

b) Formats for keys, metadata, and other exchanged data are the same or can be
translated by interoperable systems, and

c) Data exchange mechanisms, including security mechanisms, are the same or are
equivalent between interoperable systems.

19 See http://en.wikipedia.org/wiki/interoperability for more information on the power and uses of
interoperability.

http://en.wikipedia.org/wiki/interoperability

SP 800-130 August 2013

68

Current cryptographic algorithms should be implemented so that they can be augmented
or replaced when needed. [SP 800-57-part1] and [SP 800-131A] specify NIST-
recommended lifetimes of government-approved cryptographic algorithms. A CKMS
should only use algorithms whose security lifetime will cover the anticipated lifetime of
the CKMS and the information that it protects. If the CKMS is intended to remain in
service beyond the security lifetimes of its cryptographic algorithms and key lengths,
then there should be a transition strategy for migration to stronger algorithms and key
lengths in the future.

When transitioning from one cryptographic algorithm to another, a smooth transition
often requires the capability to support the use of at least two algorithms (perhaps with
different key lengths) simultaneously so that interoperability can be maintained until all
participants have the capability to operate with the new algorithm. In this case, the
cryptographic protocols should be designed to identify and negotiate which algorithm
will be used in a particular key establishment transaction. It should also be noted that the
security of data protected by different algorithms at different times is no greater than the
weakest algorithm. Therefore, it may be best to transition as quickly as feasible.

FR:7.1 The CKMS design shall specify how interoperability requirements across device
interfaces are to be satisfied.

FR:7.2 The CKMS design shall specify the standards, protocols, interfaces, supporting
services, commands and data formats required to interoperate with the applications it is
intended to support.

FR:7.3 The CKMS design shall specify the standards, protocols, interfaces, supporting
services, commands and data formats required to interoperate with other CKMS for
which interoperability is intended.

FR:7.4 The CKMS design shall specify all external interfaces to applications and other
CKMS.

FR:7.5 The CKMS design shall specify all provisions for transitions to new,
interoperable, peer devices.

FR:7.6 The CKMS design shall specify any provisions provided for upgrading or
replacing its cryptographic algorithms.

FR:7.7 The CKMS design shall specify how interoperability will be supported during
cryptographic algorithm transition periods.

FR:7.8 The CKMS design shall specify its protocols for negotiating the use of
cryptographic algorithms and key lengths.

SP 800-130 August 2013

69

8. Security Controls
A CKMS requires security controls to protect its components and devices, along with the
data that they contain. For example:

a) A CKMS should be physically protected so that its components, devices, and the
sensitive data contained within the CKMS are protected from unauthorized
disclosure and modification.

b) A CKMS will likely require computer systems to perform functions, such as key
generation, key storage, key recovery, key distribution, cryptographic module
control, and metadata management. Controls should exist to ensure that these
functions are correctly performed.

c) A CKMS will likely be networked to distribute keys and metadata to users and
other end entities. In such situations, the CKMS should be protected using
network security control devices.

d) A CKMS should generate, store, use and protect cryptographic keys using a
cryptographic module.

e) A CKMS should apply necessary cryptographic protections to keys before they
are output from a cryptographic module.

The following subsections of this section describe requirements for each of these types of
security controls.

8.1 Physical Security Controls
CKMS components and devices should be physically protected in order to ensure
information security. Without good physical security, the components and devices could
be tampered with and the hardware and/or software could be modified to bypass security.

A CKMS may include facilities that provide third-party key management services, such
as a Certification Authority, Key Distribution Center, Registration Authority, or
Certificate Directory and also end-to-end communication devices, such as personal
computers, personal digital assistants, smart phones, and intelligent sensing devices.

A CKMS may include one or more primary facilities and one or more backup facilities
that provide disaster recovery capabilities. Each of these facilities should have physical
protection, either by controlling access to the entire facility or by controlling access to the
sensitive components or devices within the facility. The use of backup systems for
disaster recovery is discussed in Section 10.4.

One or more of the following mechanisms should be chosen to physically protect a
CKMS facility, depending on the security criticality of its components and devices. The
following are examples of physical security mechanisms. Some of the mechanisms listed
below are detection mechanisms that should be augmented with appropriate prevention
mechanisms.

SP 800-130 August 2013

70

a) Fences,
b) Gates, doors, and covers,
c) Guards,
d) Locks (keyed or combination),
e) Tamper detection and protection,
f) Passwords
g) Badges
h) Card and token systems,
i) Biometric devices,
j) Alarm systems,
k) Surveillance camera,
l) Audit systems, and
m) Entry and exit logs.

FR:8.1 The CKMS design shall specify each of its CKMS devices and their intended
purposes.

FR:8.2 The CKMS design shall specify the physical security controls for protecting each
device containing CKMS components.

8.2 Operating System and Device Security Controls
This section addresses the computer security controls for operating systems and CKMS
devices. Note that the devices of a CKMS that incorporate a general-purpose operating
system should also have computer security controls.

8.2.1 Operating System Security
A secure operating system is the foundation of a secure computer system. Without a
secure operating system, the security of the programs and data on the computer system
cannot be assured. A secure operating system has the following security features:

i. BIOS protection features to ensure the proper instantiation of the operating
system at start-up (see [SP 800-147]).

ii. Self-protection features to protect the operating system from unauthorized
modification by users and user processes;

iii. Isolation features to provide and maintain separate domains of execution for the
users and user processes so that they do not interfere with each other and thus
compromise a security policy requirement for data separation;

iv. Access controls and operating system features that allow users to share data based
on user, group or other metadata elements;

v. Event-logging capabilities in order to support personal accountability and to
investigate anomalies; and

vi. User CKMS account management, including entity identification and
authentication.

SP 800-130 August 2013

71

A secure operating system depends on a trusted hardware platform running secure code.
The trusted hardware platform often enforces two or more states in order to provide
privileged operations, such as memory and I/O management.

In some situations, a secure operating system is an isolation kernel (also known as
hypervisor), which provides virtual machines to the guest operating systems and CKMS
applications running on top of the guest operating systems. In this architecture, the
isolation kernel views the guest operating systems as the applications.

CKMS devices that perform dedicated security functions and are not built with general-
purpose capabilities can have reduced or minimal operating system requirements. As an
example, consider a special-purpose device loaded with firmware and/or software to
perform intrusion detection functions. This device may not have an operating system, and
hence, has no operating system security requirements. Another example is a firewall or
intrusion detection system built on a “locked-down” (i.e., non-modifiable) operating
system so that the capability to load additional code is not available.

FR:8.3 The CKMS design shall specify all secure operating system requirements
(including any required operating system configurations) for each CKMS device.

FR:8.4 The CKMS design shall specify which of the following hardening20 features are
enforced by the CKMS:

a) Removing all non-essential software programs and utilities from the computer;
b) Using the principle of least privilege to control access to sensitive system features

and applications;
c) Using the principle of least privilege to control access to sensitive system and

application files and data;
d) Limiting user accounts to those needed for legitimate operations, i.e., disabling or

deleting the accounts that are no longer required;
e) Running the applications with the principle of least privilege;
f) Replacing all default passwords and keys with strong passwords and randomly

generated keys, respectively;
g) Disabling or removing network services that are not required for the operation of

the system;
h) Disabling or removing all other services that are not required for the operation of

the system;
i) Disabling removable media, or disabling automatic run features on removable

media and enabling automatic malware checks upon media introduction;
j) Disabling network ports that are not required for the system operation;
k) Enabling optional security features as appropriate; and

20 Hardening is further discussed in Section 11.4.

SP 800-130 August 2013

72

l) Selecting other configuration options that are secure.

FR:8.5: The CKMS design shall specify the BIOS protection features that ensure the
proper instantiation of the operating system.

8.2.2 Individual CKMS Device Security
A CKMS may consist of a variety of devices. It is preferable that each device be designed
to protect itself from unauthorized use. Otherwise, externally applied protections are
necessary. Depending on the system design and functional requirements, a CKMS device
may provide finer-grained access control and device-specific event logging that is not
captured by the host operating system. For example, a cryptographic module could have
its own access control system. Thus, a well-designed CKMS device should have the
following security features:

a) Self-protection from other CKMS devices (e.g., by utilizing operating system
process isolation),

b) Self-protection from CKMS device users,
c) Isolation features to provide and maintain separate sessions for the users and user

processes so that they do not interfere with each other and thus violate the security
policy of data separation,

d) Fine-grained access controls on CKMS device-level objects (e.g., keys and
metadata or Data Base Management System rows and tables) to allow users to
share data based on user, group or other metadata elements,

e) CKMS device-level event logging in order to support personal accountability and
to investigate anomalies, and

f) User account management for the CKMS.

FR:8.6 The CKMS design shall specify the security controls required for each CKMS
device.

FR:8.7 The CKMS design shall specify the device/CKMS secure configuration
requirements and guidelines that the hardening is based upon.

8.2.3 Malware Protection
CKMS devices that receive communications, data, files, etc. over unprotected networks
should scan the information for malware. Malware protection may be less critical if no
information is received over unprotected networks, or if all information is strongly (e.g.,
cryptographically) authenticated. Malware protection falls into the following three
general categories:

a) Anti-virus software that protects CKMS devices from unwittingly installing and
executing programs that perform unintended actions and may cause a security
compromise,

b) Anti-spyware software that protects CKMS devices from unauthorized parties
obtaining system administrator status or authorized user status, and prevents the
spyware from taking on authorized device behavior, and

SP 800-130 August 2013

73

c) Rootkit detection and prevention software that protects CKMS devices from
rootkit malware that changes the configuration setting of the operating system in
order to replace system code and hide processes and files, including the rootkit
code itself, from anti-virus and anti-spyware software.

The integrity of operating system and CKMS application software should be checked
upon installation and periodically thereafter. Examples of software integrity verification
upon installation include the chain of custody for the software and the verification of
integrity codes (e.g., hash values, message authentication codes, and digital signatures)
used to assure that the software has not been modified. Examples of periodic verification
include the daily verification of hash values, message authentication codes, digital
signatures, and modification dates on the installed software, etc.
In order to be effective, malware protection should be configured to perform the
following:

a) A daily scan of installed software,
b) A scan of removable media when first introduced into the CKMS,
c) A scan of newly installed software and data files,
d) A weekly update of the malware protection software, and
e) A weekly update of the malware signature database.

FR:8.8 The CKMS design shall specify the following malware protection capabilities for
CKMS devices:

a) Anti-virus protection software, including the specified time periods and events
that trigger anti-virus scans, software update, and virus signature database
updates;

b) Anti-spyware protection software, including the specified time periods and events
that trigger anti-spyware scans, software update, and virus signature updates; and

c) Rootkit detection and protection software, including the specified time periods
and events that trigger rootkit detection, software update, and signature updates.

FR:8.9 The CKMS design shall specify the following software integrity check
information for operating system and CKMS application software:

a) If software integrity is verified upon installation, indicate how the verification is
performed; and

b) If software integrity is verified periodically, indicate how often the verification is
performed.

8.2.4 Auditing and Remote Monitoring
A CKMS should audit security-relevant events by detecting and recording the event, the
date and time of the event, and the identity or role of the entity initiating the event. The
audit log should provide a record of the relevant security functions performed. The audit
capability may be spread over several CKMS devices and locations. The audit capability

SP 800-130 August 2013

74

should also have the ability to detect and report to the audit administrator role any
unusual events that should be investigated as soon as possible. The audit capability and
audit log should be protected from unauthorized modification so that the integrity of the
audit system can be assured.

Automated assessment tools, such as those specified in the Security Content Automation
Protocol (SCAP), are becoming increasingly useful in assessing the current status and
integrity of computer systems. These tools can interrogate an operating system to
determine its status in real time (see [SP 800-126]). Software version numbers can be
checked for currency, and the integrity and confidentiality of the data files can be
verified. Monitoring tools may execute on the platform being monitored or on another
platform dedicated to monitoring other hosts. These monitoring tools can detect
modifications to system files or their access control attributes and post alerts and audit
events (see Section 6.8.5).

FR:8.10 The CKMS design shall specify the auditable events supported and indicate
whether each event is fixed or selectable.

FR:8.11 For each selectable, auditable event, the CKMS design shall specify the role(s)
that has the capability to select the event.

FR:8.12 For each auditable event, the CKMS design shall specify the data to be
recorded21.

FR:8.13 The CKMS design shall specify what automated tools are provided to assess the
correct operation and security of the CKMS.

FR:8.14 The CKMS design shall specify system-monitoring requirements for sensitive
system files to detect and/or prevent their modification or any modification to their
security attributes, such as their access control lists.

8.3 Network Security Control Mechanisms
This section addresses the network security control mechanisms for each of the computer
systems involved in the CKMS. Examples of network security control mechanisms
include:

a) Firewalls,
b) Filtering Routers,
c) Virtual Private Networks (VPNs),
d) Intrusion Detection Systems (IDS),
e) Intrusion Prevention Systems (IPS),
f) Adaptive Network Security Controls,

21 Examples of recorded data include the unique event identifier, the date and time of the event,
the subject (e.g., user, role or software process) causing the event, the success or failure of the
event and the event-specific data.

SP 800-130 August 2013

75

i. Adaptive Filtering mechanisms,
ii. Adaptive Detection mechanisms, and
iii. Adaptive Prevention mechanisms.

Networked CKMS devices should be protected using a combination of firewalls and
intrusion detection and prevention systems. While firewalls provide protection by
filtering out unwanted and potentially dangerous protocols and by examining permitted
protocol data to reduce the chances of a successful attack, intrusion detection and
prevention systems complement firewalls by examining host and network activity to
determine if the systems are being attacked and by preventing the detected attacks. Thus,
both firewall and intrusion detection and prevention systems should be used.

Boundary control devices (such as firewalls, filtering routers, VPNs, IDS, and IPS) could
be hosted on computer systems (see Section 8.2) or could be implemented in dedicated
hardware. These devices should be placed in physically secure locations (see Section 8.1
for physical security controls) and should only be configured with user accounts and
network services that are required for secure operation. In order to provide defense-in-
depth, boundary control functions should also be implemented directly in CKMS devices.
Such controls are termed “host-based” firewalls.

FR:8.15 The CKMS design shall specify the boundary protection mechanisms employed
by the CKMS.

FR:8.16 The CKMS design shall specify:

a) The types of firewalls used and the protocols permitted through the firewalls,
including the source and destination for each type of protocol; and

b) The types of intrusion detection and prevention systems used, including their
logging and security breach reaction capabilities.

FR:8.17 The CKMS design shall specify the methods used to protect the CKMS devices
against denial of service.

FR:8.18 The CKMS design shall specify how each method used protects against the
denial of service.

8.4 Cryptographic Module Controls
A cryptographic module is a set of hardware, software and/or firmware that implements
cryptographic-based security functions (e.g. cryptographic algorithms and key
establishment schemes). The module encompasses everything within its cryptographic
boundary22 and includes the boundary itself. Each cryptographic module should be built
in accordance with and to enforce a cryptographic module security policy (e.g. see [FIPS
140]).

22 A cryptographic boundary is an explicitly defined perimeter that establishes the boundary of all
components of a cryptographic module.

SP 800-130 August 2013

76

Two primary security issues should be addressed regarding the security of the contents of
cryptographic modules: the integrity of the security functions and the protection of the
cryptographic keys and metadata. For example, [FIPS 140] specifies requirements on
cryptographic modules for protecting keys within the module and maintaining the
integrity of the module’s security functions. Techniques such as the software/firmware
integrity test and known-answer test, along with physical protection from unauthorized
access and/or alteration, are specified in the FIPS. Since the cryptographic keys are
present in plaintext form for some period of time within the module, physical security
measures are necessary to protect keys from unauthorized disclosure, modification, and
substitution. A cryptographic module may provide the necessary physical protection.
Otherwise, a larger, physically protected space that includes the module is needed.

Vendors of hardware cryptographic products or modules often build physical security
safeguards into their devices by using strong metal cases, locks, alarms, and key
destruction mechanisms. However, software cryptographic applications running on
general-purpose computers face additional risks because these computers were not
designed and built to provide sufficient protection for cryptographic keys. In fact, the
very computers on which the cryptography runs usually contain software written by
individuals that have not been vetted for security. It is, therefore, critical that
cryptographic software running on a general-purpose computer is both physically
protected (i.e., kept in a safe environment) and logically protected from exploitation by
distrusted (perhaps hostile) code. [FIPS 140] provides guidance regarding these
protections.

FR:8.19 The CKMS design shall identify the cryptographic modules that it uses and their
respective security policies, including:

a) The embodiment of each module (software, firmware, hardware, or hybrid),
b) The mechanisms used to protect the integrity of each module,
c) The physical and logical mechanisms used to protect each module’s cryptographic

keys, and
d) The third-party testing and validation that was performed on each module

(including the security functions) and the protective measures employed by each
module.

9. Testing and System Assurances
A CKMS device should undergo several types of testing to ensure that it has been built to
conform to its design, that it conforms to certain standards, that it continues to operate
according to its design, that it does not perform functions that may compromise its
security, that it is interoperable with other CKMS devices, and that it can be used in the
larger systems for which it is intended with reasonable assurance of preserving security.

Since testing is restricted to a finite number of cases that is typically much less than the
total number of possibilities, testing does not guarantee that a device or system is correct

SP 800-130 August 2013

77

or secure in all cases. Thus, the value of passing a test suite is directly related to the
comprehensiveness and representation of the selected test cases.

 A CKMS device may undergo tests in the categories listed below.

9.1 Vendor Testing
Device vendors test their devices to detect and eliminate errors and then to verify that
they work as expected. The techniques and specifics of this category of testing are often
considered proprietary information by the vendor and are generally not made public.

FR:9.1 A CKMS design shall specify the non-proprietary vendor testing that was
performed on the system and passed.

9.2 Third-Party Testing
A vendor or customer may request that a third-party test a CKMS device for conformance
to a particular standard. Third-party testing provides confidence that the vendor did not
overlook some flaw in its own testing procedures. For example, the National Institute of
Standards and Technology has established several programs for validating the
conformance of products to its cryptographic standards and recommendations.

FR:9.2 The CKMS design shall specify all third-party testing programs that have been
passed to date by the CKMS or its devices.

9.3 Interoperability Testing
Interoperability testing, in its most general form, merely tests that two or more devices
can be interconnected and operate with one another. This means that the data exchanged
between the devices is in a format that each device can process. Interoperable devices
may be interconnected to form a system, and interoperable systems may be
interconnected to form a network. Note that this type of testing does not necessarily test
the internal functioning of the individual device. If a device performs a unique function,
interoperability testing may not verify the correct operation of that function.

Another form of interoperability testing is used to verify that a device (i.e., the device-
under-test) appears to be working properly. If another device that performs the same or
complementary functions (i.e., the assured-baseline device) has been tested and verified
to operate correctly, the device-under-test may be tested to verify that it interoperates
with the assured-baseline device; this provides some assurance that the device-under-test
operates correctly. For example, a device performing key establishment could be tested
against another such device that is believed to operate correctly. If the two devices agree
on the established key, then the test is passed. This testing produces more credible results
when the device-under-test and the assured-baseline device are independently designed
and built by different organizations or by individuals working independently of those
involved with designing and implementing the device-under-test. This is because two
devices built by the same group may interoperate consistently, but incorrectly, with each
other. The NIST Cryptographic Algorithm Validation Program (CAVP) performs

SP 800-130 August 2013

78

interoperability testing on implementations of NIST-approved cryptographic algorithms
using implementations developed by NIST as assured-baseline implementations.

FR:9.3 If a CKMS claims interoperability with another system, then the CKMS design
shall specify the tests that have been performed and passed that verify the claim.

FR:9.4 If a CKMS claims interoperability with another system, then the CKMS design
shall specify any configuration settings that are required for interoperability.

9.4 Self-Testing
A device may be designed, implemented, and operated correctly when first deployed, but
fail some time later. When a failure is detected in a device, the device can be repaired or
replaced, but undetected failures can have major security implications. A CKMS should
use devices that test themselves for integrity and security failures. For example, [FIPS
140] specifies several self-tests to help verify the correct operation of a cryptographic
module, including all its security functions.

FR:9.5 The CKMS design shall specify all self-tests created and implemented by the
designer and the corresponding CKMS functions whose correct operation they verify.

9.5 Scalability Testing
Scalability is the ability of a system, network, or process, to correctly process increasing
amounts of work in a graceful manner, or its ability to be enlarged to accommodate that
increase. Scalability testing involves testing a device or system to learn how it reacts
when the number of transactions to be processed or participants to be handled over a
given period of time increases dramatically. Every device has its limitations, but some
device designs scale better than others. If systems are not designed for modular
scalability, adding additional devices may not be feasible. In addition, subtle problems
often arise that cannot be solved by simply buying more equipment. Scalability testing is
used to stress devices and systems so that these problems are known and mitigated before
they become fully operational.

FR:9.6 The CKMS design shall specify all scalability analysis and testing performed on
the system to date.

9.6 Functional Testing and Security Testing
The types of tests previously described can be performed to meet particular test goals.
Functional testing attempts to verify that an implementation of some function operates
correctly. A functional test might determine that a cryptographic algorithm
implementation correctly computes the ciphertext from the plaintext, given the key.
Security testing attempts to verify that an implementation functions securely. A security
test might determine that, while a cryptographic algorithm implementation functions
correctly (i.e. it produces the correct results), fluctuations in power consumption during
the cryptographic process could lead to the compromise of the key. Thus, a cryptographic
algorithm implementation could pass functional testing, but fail security testing.

SP 800-130 August 2013

79

Penetration testing is a specific type of security testing in which a team of penetration-
testing experts develops penetration scenarios for the system as a whole and then
evaluates the risk of a successful penetration. Note that individual product/device
penetration testing may be conducted as part of the CKMS security assessment (see
Section 11). The scope of penetration testing should include personnel, facilities, and
procedures. The penetration team attempts to bypass the security safeguards with the goal
of defeating CKMS security. Any findings made by the penetration testing team should
be addressed before initial deployment.

FR:9.7 The CKMS design shall specify the functional and security testing that was
performed on the system and the results of the tests.

9.7 Environmental Testing
CKMS designs often assume a particular environment (e.g., temperature range and
voltage range) for their devices or systems. The CKMS devices or systems are then built
for that environment and tested within that environment. If the device or system is used in
a different environment, secure operation could be lost. Military systems are often
ruggedized to handle the extreme conditions under which they may be used. This extra
protection frequently comes at an additional cost.

FR:9.8 The CKMS design shall specify the environmental conditions in which the
CKMS is designed to be used.

FR:9.9 The CKMS design shall specify the results of environmental testing that was
performed on the CKMS devices, including the results of all tests stressing the devices
beyond the conditions for which they were designed.

9.8 Development, Delivery, and Maintenance Assurances
The secure development, delivery, and maintenance of CKMS products can play a
significant role in the security of the CKMS. The following areas should be considered:

a) Configuration Management,
b) Secure Delivery,
c) Development and Maintenance Environmental Security, and
d) Flaw Remediation.

Each of these areas is described in the following subsections.

9.8.1 Configuration Management
A CKMS should incorporate products that are developed and maintained under an
appropriate configuration management system in order to ensure that security is not
reduced and functional flaws are not introduced due to unauthorized or unintentional
changes to the products.

SP 800-130 August 2013

80

FR:9.10 The CKMS design shall specify:
a) The devices (including their source code, documentation, build scripts, executable

code, firmware, hardware, documentation, and test code) to be kept under
configuration control.

b) The protection requirements (e.g., formal authorizations and proper record
keeping) to ensure that only authorized changes are made to the components and
devices under configuration control.

9.8.2 Secure Delivery
When products to be used in a CKMS are delivered, assurance of secure delivery (i.e. that
the products received are the exact products that were ordered) is necessary.

FR:9.11 The CKMS design shall specify secure delivery requirements for the products
used in the CKMS, including:

a) Protection requirements to ensure that the product has not been tampered with
during the delivery process or that tampering is detected,

b) Protection requirements to ensure that the product has not been replaced during
the delivery process or that replacement is detected,

c) Protection requirements to ensure that an unrequested delivery is detected, and
d) Protection requirements to ensure that the product delivery is not suppressed or

delayed and that suppression or delay is detected.

9.8.3 Development and Maintenance Environmental Security
The CKMS development and maintenance environments must be properly protected from
physical, personnel, and IT hacking threats. Tools such as compilers, software linkers,
and text editors should not be automatically trusted.

FR:9.12 The CKMS design shall specify the security requirements for the development
and maintenance environments of the CKMS, including:

a) Physical security requirements,
b) Personnel security requirements, such as clearances and background checks for

developers, testers, and maintainers,
c) Procedural security, such as multi-person control and separation of duties,
d) Computer security controls to protect the development and maintenance

environment and to provide access control to permit authorized user access,
e) Network security controls to protect the development and maintenance

environment from hacking attempts,
f) Cryptographic security control to protect the integrity of software and its control

data under development, and
g) The means used to ensure that the tools (e.g., editors, compiler, software linkers,

loaders, etc.) are trustworthy and are not sources of malware.

SP 800-130 August 2013

81

9.8.4 Flaw Remediation Capabilities
A CKMS should have the capability to detect, report, and fix flaws in an expeditious and
secure manner. A CKMS that employs automated techniques is highly desirable because
it can continuously monitor its own security status, report potential problems to an
authorized person fulfilling an appropriate CKMS role, and minimize reliance on human
monitoring of events that occur infrequently.

FR:9.13 The CKMS design shall specify the CKMS capabilities for detecting system
flaws, including:

a) Known-answer tests,
b) Error detection codes,
c) Anomaly diagnostics, and
d) Functional Testing.

FR:9.14 The CKMS design shall specify the CKMS capability for reporting flaws,
including: the capability to produce status report messages with confidentiality, integrity
and source authentication protections, and to detect unauthorized delays.

FR:9.15 The CKMS design shall specify the CKMS capability for analyzing flaws and
creating/obtaining fixes for likely or commonly known flaws.

FR:9.16 The CKMS design shall specify its capability to transmit fixes with
confidentiality, integrity and source authentication protections and to detect unauthorized
delays.

FR:9.17 The CKMS design shall specify its capability for implementing fixes in a timely
manner.

10. Disaster Recovery
The use of a CKMS to manage cryptographic keys and metadata that are used to protect
information has the additional risk that a failure of the CKMS may hamper or prevent
access to the information. For example, the failure of the decrypting capability may delay
or prevent the use of enciphered data. This section describes how operational continuity
can be achieved in the event of component failures or the corruption of keys and
metadata

10.1 Facility Damage
A CKMS should be located in physically secure and environmentally protected facilities.
In addition, the CKMS management should provide for backup and recovery in the event
that damage to the CKMS occurs. The backup and recovery facilities should be designed,
implemented, and operated at a level that is commensurate with the value and sensitivity
of the data and the operations being protected. When a CKMS facility is damaged,
operations should be transferred to a backup facility, and keys that could have been
disclosed accidentally should be immediately placed on Compromised Key or Certificate

SP 800-130 August 2013

82

Revocation Lists and replaced, if appropriate. Wind and water damage are the common
environmental risks; fire is both an environmental risk and a facility design-dependent
risk.

FR:10.1 The CKMS design shall specify the required environmental, fire, and physical
access control protection mechanisms and procedures for recovery from damage to the
primary and all backup facilities.

10.2 Utility Service Outage
A CKMS requires reliable utility services, including electricity, water, sewer, air
conditioning, heat, and clean air in order to assure the continued availability of the
CKMS. Electrical power sufficient to satisfy the requirements of all electronic devices, as
well as human safety and comfort provisions in normal operations and during
emergencies, should be available in the primary and all backup CKMS facilities.

FR: 10.2 The CKMS design shall specify the minimum as well as recommended
electrical, water, sanitary, heating, cooling, and air filtering requirements for the primary
and all backup facilities.

10.3 Communication and Computation Outage
A CKMS needs sufficient communication and computation capability to perform its
required functions and to provide the services required by its users. Long-distance
communication capabilities are typically offered by commercial vendors, and many
computer vendors can provide computers sufficient for large key-management
applications. Redundant communications equipment is often installed in a CKMS to
assure high availability. Remote on-line backup facilities can be used to provide even
higher service availability, especially against potential environmental (e.g., weather)
risks. The ability to quickly access alternative communications services is highly
desirable in the event of a communications service failure.

FR:10.3 The CKMS design shall specify the communications and computation
redundancy present in the design and required to be available during operation in order to
assure continued operation of services commensurate with the anticipated needs of users,
enterprises, and CKMS applications.

10.4 System Hardware Failure
Since the CKMS is critical for the secure operation of the information management
system that it supports, it is desirable to minimize the impact of hardware failures of
CKMS components and devices. Several approaches to recover from hardware failure
exist. These approaches tend to trade-off the ease and speed of recovery with cost. The
redundancy of backup systems can provide assurance that the operational impact of a
single hardware failure is quickly detected and that a fully operational secure state is
quickly attained. In order for backup systems to be most effective, they should maintain
synchronization with the primary system. Backup systems that continuously maintain
synchronization with the primary system are called “hot” backups. These systems are

SP 800-130 August 2013

83

capable of immediately taking over the responsibilities of the primary system. Some
systems synchronize periodically and have a catch-up procedure to bring the backup
system up to the state that the primary system had just before the failure occurred.

It is essential that backup systems have as much independence from the primary system
as possible so that a failure to the primary system does not also result in the same failure
to the backup. For example, a power surge on a common power line could cause both the
primary and its backup to fail. In order to maximize independence, it is best not to co-
locate a backup system with the primary system. Multiple backup systems can be used to
provide error detection capabilities. For example, if three systems are all performing the
same functions, then the failure of any one system can be detected and corrected by
taking the majority vote of the three systems as the valid result. Since redundancies
increase the cost of providing services, system vendors and CKMS owners strive to find
an optimum trade-off between redundancy and cost.

FR:10.4 The CKMS design shall specify the strategy for backup and recovery from
failures of hardware components and devices.

10.5 System Software Failure
Software failures are typically of two types:

a. Software that was incorrectly written so that it does not perform as desired when a
particular condition occurs, and

b. Software that was written correctly, but has been garbled when it resides in
memory before it is executed.

Many software failures can be avoided by writing code using good, well-established
programming practices. Several books have been written on this topic that involve the use
of good programming procedures, addressing boundary conditions, protecting against
memory overflows, code analysis, and proper software testing.

Failures that garble code should be detected as soon as possible. This may be
accomplished by validating an error detection code or known-answer test on the software
before it is run. If an error is detected, the program can be implemented to enter an error
state and output an error indicator. This permits the error to be detected and repaired
before the code is used operationally. These tests can also be executed periodically as
desired. Redundant systems, as previously discussed in Section 10.4, can also be used to
recover from this type of failure.

When the CKMS in a primary facility is recovered to a known secure state, some of the
data created since the last secure state may be lost. A CKMS should be implemented and
operated under the assumption that a catastrophe will eventually occur. Therefore, it is
recommended that full secure-state system backups be made on a regular basis, and that
the latest CKMS secure state be reloaded into a repaired and ready CKMS.

SP 800-130 August 2013

84

FR:10.5 The CKMS design shall specify all techniques provided by the CKMS to verify
the correctness of the system software.

FR:10.6 The CKMS design shall specify all techniques provided by the CKMS to detect
alterations or garbles to the software once it is loaded into memory.

FR:10.7 The CKMS design shall specify the strategy for backup and recovery from a
major software failure.

10.6 Cryptographic Module Failure
Cryptographic modules should have built-in tests that are adequate to detect hardware,
software, or firmware failures. Cryptographic modules may have pre-operational,
conditional, and periodic self-tests. For example, when a failure is detected within a
[FIPS 140]-2 validated module, control is passed to an error state that outputs an error
indicator and determines whether the error is a non-recoverable type (i.e. one that
requires service, repair, or replacement) or a recoverable type (i.e., one that requires
initialization or resetting). In most cases, sensitive data should not be output from the
module while it is in the error state. If the error is recoverable, the module should be
rebooted and pass all power-up self-tests before continuing normal processing. If the
error recurs on repeated attempts to reboot, then the module should be replaced.

FR:10.8 The CKMS design shall specify what self-tests are used by each cryptographic
module to detect errors and verify the integrity of the module.

FR:10.9 The CKMS design shall specify how each cryptographic module responds to
detected errors.

FR:10.10 The CKMS design shall specify its strategy for the repair or replacement of
failed cryptographic modules.

10.7 Corruption of Keys and Metadata
Cryptographic keys and metadata may be corrupted in transmission or in storage.
Corrupted keys and metadata should be replaced or corrected as soon as the corruption is
detected. The replacement of corrupted keys and metadata typically involves the
establishment or storage of a new key and metadata. If a corrupted key or a key with
corrupted metadata was used to protect data, the security consequences should be
evaluated, since a loss or compromise of sensitive data could result. Key establishment
and key storage protocols are frequently designed to detect and replace corrupted keys.

A major disaster could result in large numbers of operational keys and metadata being
lost or corrupted beyond recovery in primary storage. If a key recovery, backup, or
archive system exists, then the keys and metadata can and should be restored. However,
if the keys were not backed-up or archived, then they would have to be replaced with new
keys, and the information that the original keys protected could be lost.

SP 800-130 August 2013

85

FR:10.11 The CKMS design shall specify its procedures for backing-up and archiving
cryptographic keys and their metadata.

FR:10.12 The CKMS design shall specify its procedures for restoring or replacing
corrupted keys and metadata that have been stored or transmitted.

11. Security Assessment
CKMS security may be assessed at any time throughout the lifetime of the CKMS. This
section highlights assessment considerations to be made during the initial deployment,
during periodic (e.g., annual) reviews, and during incremental assessments after major
changes. For additional information on U.S. Government security assessment practices,
see [SP 800-37], [SP 800-53], [SP 800-53A], and [SP 800-115].

11.1 Full Security Assessment
Prior to or upon deployment of a CKMS, its security should be fully assessed. The
activities that can be undertaken to assess the security of the CKMS include the
following:

a) Review of third-party validations,
b) Architectural review of the system design,
c) Functional and security testing of the CKMS, and
d) Penetration testing of the CKMS.

Each of these activities is described in the following subsections.

FR:11.1 The CKMS design shall specify the necessary assurance activities to be
undertaken prior to or in conjunction with a full CKMS security assessment.

FR:11.2 The CKMS design shall specify the circumstances under which a full security
assessment is repeated.

11.1.1 Review of Third-Party Validations
While there are currently no formal validation programs for the security of a CKMS, the
following validation programs exist for certain devices of a CKMS:

a) NIST-approved cryptographic algorithm implementations can be validated under
the NIST Cryptographic Algorithm Validation Program (CAVP),

b) Cryptographic modules can be validated for conformance to [FIPS 140]-2 under
the NIST Cryptographic Module Validation Program (CMVP),

c) Non-cryptographic security and hardware (e.g. operating systems, DBMS, or
firewall) can be validated using the Common Criteria Standard (see [ISO/IEC
15408 Parts 1-3]) under the National Information Assurance Partnership (NIAP),
and

d) A CKMS, or parts thereof, could also be validated by a private entity hired by the
vendor or a sponsor.

SP 800-130 August 2013

86

While these validation programs do not guarantee security, they can significantly increase
confidence in the security and integrity of the CKMS.

FR:11.3 The CKMS design shall specify all validation programs under which any of the
CKMS devices have been validated.

FR:11.4 The CKMS design shall specify all validation certificate numbers for its
validated devices.

11.1.2 Architectural Review of System Design
Under this activity, a team of experts is assembled to evaluate the CKMS architecture.
The architecture review team should have access to the CKMS design information, the
third-party validation information, and the results of all available CKMS testing. The
recommendations provided by the architecture review team should be reviewed by the
designer, and the recommendations that are selected to be integrated into the CKMS
should result in documented and implemented design changes. The architecture review
team should also make recommendations for penetration-testing scenarios that are
reviewed by the CKMS management. Penetration tests that are selected to be performed
should be done in a timely manner in accordance with CKMS management direction.

The architecture review team should have expertise in cryptography, cryptographic
protocols, secure system design, network security, computer security, human
usability/accessibility, functional safety, distributed system design, and applicable
information system law and regulations.

FR:11.5 The CKMS design shall specify whether an architectural review is required as
part of the full security assessment.

FR:11.6 If an architectural review is required, then the CKMS design shall specify the
skill set required by the architectural review team.

11.1.3 Functional and Security Testing
Functional and security testing is typically performed as part of the full security
assessment, the periodic security review, and the incremental security assessment. A
variety of functional and security tests may be performed by the vendor, the information
owner, or a trusted third-party (see Section 9).

FR:11.7 The CKMS design shall specify all required functional and security testing of
the CKMS.

FR:11.8 The CKMS design shall report the results of all functional and security tests
performed to date.

SP 800-130 August 2013

87

11.1.4 Penetration Testing
Penetration testing tests the CKMS to verify the extent to which it resists active attempts
to compromise its security. This type of testing requires security experts who are
knowledgeable about the typical attack techniques and system weaknesses, and who also
have the ability to create and try new or unsuspected attack methods. The attack group
should contain some individuals who are not part of the CKMS design team and who do
not have preconceived notions about its security. Successful attack methods often involve
using the system in unintended or unsuspected ways.

FR:11.9 The CKMS design shall specify the results of any completed penetration testing
performed to date.

11.2 Periodic Security Review
This review consists of an examination of the system controls, physical controls,
procedural controls and personnel controls to ensure that these controls are in place and
operational as claimed. Changes to the system since the previous security review should
be examined to ensure that the products/devices are operating with the latest updates and
security patches in secure configurations, and that the products continue to maintain their
third-party security ratings. Issues identified as the result of the review should be
addressed. In addition, periodic functional and security testing should be performed (see
Section 9.6).

FR:11.10 The CKMS design shall specify the periodicity of security reviews.

FR:11.11 The CKMS design shall specify the scope of the security review in terms of
the CKMS devices.

FR:11.12 The CKMS design shall specify the scope of the periodic security review in
terms of the activities undertaken for each CKMS device under review.

FR:11.13 The CKMS design shall specify the functional and security testing to be
performed as part of the periodic security review.

11.3 Incremental Security Assessment
When the system has undergone significant changes, an incremental assessment of the
changes in the following areas described in Section 11.1 should be performed:

a) Changes to third-party-validated devices since the previous security assessment,
b) Architecture review of the system design changes, and
c) Functional and security testing of the CKMS.

If the cumulative system changes are significant, a full CKMS security assessment as
specified in Section 11.1 should be conducted.

FR:11.14 The CKMS design shall specify the circumstances under which an incremental
security assessment should be conducted.

SP 800-130 August 2013

88

FR:11.15 The CKMS design shall specify the scope of incremental security assessments.

11.4 Security Maintenance
While a CKMS may be designed, developed and deployed to provide a specific level of
protection (e.g., low, medium, or high), the protection provided may be reduced as
configuration changes are made and as new threats are found. In order to maintain and
enhance the security of the system, the CKMS should be properly upgraded, reviewed
and tested against hardening guidelines. Examples of hardening activities include
updating the CKMS with the latest security patches, periodic review of the system
configuration against the hardening guidelines, periodic testing of the CKMS against
hardening guidelines, application of revised hardening guidelines, and periodic
penetration testing.

FR:11.16 The CKMS design shall list the hardening activities required to be performed
in order to maintain its security.

12. Technological Challenges
A CKMS should be designed and implemented to have a security lifetime of many years.
Therefore, the designer should consider possible threats resulting from advances in
technology that may render the CKMS insecure. Some examples are discussed below.

a) New Attacks on Cryptographic Algorithms

A cryptographic algorithm has an expected security life. However, as time passes,
new attacks may be found that reduce its security life. This, in turn, is likely to
reduce the security lifetime of the CKMS that relies on the algorithm to protect its
keys and metadata. Eventually, the cryptographic algorithm may need to be
upgraded or replaced altogether.

Cryptographic algorithms should be implemented within cryptographic modules
in a manner so that the algorithms can be replaced or updated without
significantly affecting the rest of the implementation. For example, key lengths
and block lengths should be variable so that they may be easily increased if and
when necessary.

b) New Attacks on Key Establishment Protocols

Weaknesses are often found in protocols after they have been in use for several
years. Protocols are seldom evaluated to the same extent as cryptographic
algorithms, and it is often difficult to upgrade a protocol once it is widely used.
Therefore, it is important that a CKMS uses evaluated and tested protocols for key
establishment.

c) New Attacks on CKMS Devices

New methods for logically attacking and subverting computer-based systems are
continuously being discovered. The CKMS designer should prevent, to the

SP 800-130 August 2013

89

maximum extent that is feasible, external access to CKMS devices by
unauthorized parties. The access control mechanisms upon which the CKMS
relies for its security should be periodically reviewed against the most recent
attacks being perpetrated and upgraded as required.

d) New Computing Technologies

New computing technologies may threaten the security of a CKMS. The current
threat of highest concern is that of the development of quantum computers with
sufficient capability to recover cryptographic keys. The implementation of
practical quantum computers could result in a major change in cryptographic
security technology. For example, if large qubit quantum computers could be
built, the security of integer factorization and discrete log-based public key
cryptographic algorithms would be threatened. This would have a major impact
on the CKMS that rely on these algorithms for the establishment of cryptographic
keys. Research is currently underway to find public key algorithms that are
resistant to quantum computing (e.g., lattice-based public key cryptography), but
no widely accepted solution has yet been found. Research is also currently
underway to find scalable, symmetric key distribution architectures that can use
symmetric key algorithms (e.g., AES-256) that are currently considered more
resistant to quantum computing attacks.

FR:12.1 The CKMS design shall specify the expected security lifetime of each
cryptographic algorithm implemented in the system.

FR:12.2 The CKMS design shall specify which sub-functions (e.g., the hash sub-
function of HMAC) of the cryptographic algorithms can be upgraded or replaced with
similar, but cryptographically improved, sub-functions without negatively affecting the
CKMS operation.

FR:12.3 The CKMS design shall specify which key establishment protocols are
implemented by the system.

FR:12.4 The CKMS design shall specify the expected security lifetime of each key
establishment protocol implemented in the system in terms of the expected security
lifetimes of the cryptographic algorithms employed.

FR:12.5 The CKMS design shall specify the extent to which external access to CKMS
devices is permitted.

FR:12.6 The CKMS design shall specify how all allowed external accesses to CKMS
devices is controlled.

FR:12.7 The CKMS design shall specify the features employed to resist or mitigate the
consequences of the development of new technologies, such as a quantum computing
attack upon the CKMS cryptographic algorithms.

SP 800-130 August 2013

90

FR:12.8 The CKMS design shall specify the currently known consequences of a
quantum computing attack upon the CKMS cryptography.

SP 800-130 August 2013

91

Appendix A: References

A short summary is provided for each of the items below so that the reader can
immediately determine the applicability of the item to the reader’s needs.

1. [FIPS 140]

FIPS 140-2: Security Requirements for Cryptographic Modules, May 2001,
www.csrc.nist.gov/publications/PubsFIPS.html.
FIPS 140-2 specifies the requirements in eleven areas that must be met by
cryptographic modules (modules) protecting U.S. Government information. This
applies to hardware, software, firmware and hybrid modules. The standard provides
four increasing, qualitative levels of security that are intended to cover a wide range
of potential applications and environments. The security requirements cover areas
related to the secure design and implementation of a cryptographic module. These
areas include the cryptographic module specification; the cryptographic module ports
and interfaces; the roles, services, and authentication mechanisms; the finite state
model; the physical security of the module; the operational environment;
cryptographic key management; electromagnetic interference/electromagnetic
compatibility (EMI/EMC); self-tests; design assurance; and mitigation of other
attacks. Compliance with this Standard is validated under the NIST Cryptographic
Module Validation Program (CMVP).

2. [FIPS 180]

FIPS 180-4: Secure Hash Standard (SHS), March 2012,
www.csrc.nist.gov/publications/PubsFIPS.html.
FIPS 180-4 specifies hash algorithms that can be used to generate digests of
messages. The digests are used to detect whether messages have been changed since
the digests were generated. Digests may be used in the generation and validation of
digital signatures, random number generation and the generation of message
authentication codes. Compliance with this Standard is validated under the NIST
Cryptographic Algorithm Validation Program (CAVP).

3. [FIPS 186]

FIPS 186-4: Digital Signature Standard (DSS), July 2013,
www.csrc.nist.gov/publications/PubsFIPS.html.
FIPS 186-4 specifies algorithms for applications requiring a digital signature. The
standard allows the use of DSA, RSA, and ECDSA signature techniques, along with
an appropriate hash function from FIPS 180-4 to compute the digital signature. FIPS
186-4 also includes requirements and algorithms for the generation of keys and
domain parameters. Compliance with this Standard is validated under the NIST
Cryptographic Algorithm Validation Program (CAVP).

http://www.csrc.nist.gov/publications/PubsFIPS.html

SP 800-130 August 2013

92

4. [FIPS 197]
FIPS 197: Advanced Encryption Standard (AES), November 2001,
www.csrc.nist.gov/publications/PubsFIPS.html.
FIPS 197 specifies a symmetric key block cipher encryption/decryption algorithm.
The standard supports key sizes of 128, 192, and 256 bits and a block size of 128 bits.
Compliance with this Standard is validated under the NIST Cryptographic Algorithm
Validation Program (CAVP).

5. [FIPS 198]

FIPS 198-1: The Keyed-Hash Message Authentication Code (HMAC), July 2008,
www.csrc.nist.gov/publications/PubsFIPS.html.
FIPS 198-1 describes a keyed-hash message authentication code (HMAC), a
mechanism for message authentication using cryptographic hash functions. HMAC
can be used with a NIST-approved cryptographic hash function, in combination with
a shared secret key. Compliance with this Standard is validated under the NIST
Cryptographic Algorithm Validation Program (CAVP).

6. [IPSEC]

Various IPSEC RFCs under http://www.ietf.org/dyn/wg/charter/ipsecme-charter.html.
These IPSEC RFCs describe how authentication, encryption, and integrity security
services are provided for the IP packets. The RFCs cover the format of the security
services payload for the packets, cipher suites for the security services, and key
management techniques for the cryptographic algorithms used to provide the security
services.

7. [ISO/IEC 15408 Parts 1-3]

Information technology – Security techniques – Evaluation criteria for IT security,
Part 1: Introduction and general model
Part 2: Security functional requirements
Part 3: Security assurance components
http://www.iso.org/iso/catalogue.
ISO/IEC 15408-1:2009 establishes the general concepts and principles of an IT
security evaluation and specifies the general model of evaluation given by various
parts of ISO/IEC 15408, which in its entirety is meant to be used as the basis for the
evaluation of the security properties of IT products.
ISO/IEC 15408-2:2005 defines the required structure and content of security
functional components for the purpose of a security evaluation. It includes a
catalogue of functional components that will meet the common security functionality
requirements of many IT products and systems.
ISO/IEC 15408-3:2008 defines the assurance requirements of the evaluation criteria.
It includes the evaluation assurance levels that define a scale for measuring the
assurance for component targets of evaluation (TOEs), the composed assurance
packages that define a scale for measuring the assurance for composed TOEs, the
individual assurance components from which the assurance levels and packages are

http://www.ietf.org/dyn/wg/charter/ipsecme-charter.html

SP 800-130 August 2013

93

composed, and the criteria for the evaluation of protection profiles and security
targets.

8. [KERBEROS]

Various Kerberos RFCs under http://www.ietf.org/dyn/wg/charter/krb-wg-
charter.html.
These KERBEROS RFCs describe how KERBEROS authentication, encryption, and
ticket-granting security services are provided. The RFCs cover the format of the
security services payload, cipher suites for the security services, and authentication
using passwords or X.509 certificates.

9. [RFC 6960]

Online Certificate Status Protocol (OCSP), http://www.ietf.org/rfc/rfc6960.txt.
RFC 6960 specifies a protocol that may be used for determining the current status of
a public key certificate.

10. [RFC 3161]
Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP),
http://www.ietf.org/rfc/rfc3161.txt.
RFC 3161 specifies a protocol to request and receive a trusted time stamp from a
trusted third-party. The document specifies the digital signature-based structure of the
time stamp token, which can be used to provide the time associated with the existence
of a datum.

11. [RFC 3279]
Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile,
http://www.ietf.org/rfc/rfc3279.txt.
RFC 3279 specifies OIDs and the structure for storing subject public key information
for the RSA, DSA, DH and EC algorithms. The RFC also defines object identifiers
and signature structures for hashing and signing algorithms. RFC 3279 is augmented
by RFC 4055 and RFC 5480 to accommodate additional signature algorithms and
schemes.

12. [RFC 3647]
Public Key Infrastructure Certificate Policy and Certificate Practices Framework,
http://www.ietf.org/rfc/rfc3647.txt.
RFC 3647 presents a comprehensive list of topics that potentially need to be
addressed in a certificate policy or a certification practice statement.

13. [RFC 4055]
Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile, http://www.ietf.org/rfc/rfc4055.txt.

http://www.ietf.org/dyn/wg/charter/krb-wg-charter.html
http://www.ietf.org/dyn/wg/charter/krb-wg-charter.html
http://www.ietf.org/rfc/rfc3161.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc3647.txt
http://www.ietf.org/rfc/rfc4055.txt

SP 800-130 August 2013

94

RFC 4055 supplements RFC 3279, by describing the conventions for using the RSA-
PSS signature algorithm, and the RSA-OAEP key transport algorithm.

14. [RFC 4251]

The Secure Shell (SSH) protocol Architecture, http://www.ietf.org/rfc/rfc4251.txt.
RFC 4251 specifies a protocol for secure remote login and other secure network
services over an insecure network. This document describes the architecture of the
SSH protocol, as well as the notation and terminology used in SSH protocol
documents. It also discusses the SSH algorithm naming system that allows local
extensions. The SSH protocol consists of three major components: The Transport
Layer Protocol provides server authentication, confidentiality, and integrity with
perfect forward secrecy; the User Authentication Protocol authenticates the client to
the server; and the Connection Protocol multiplexes the encrypted tunnel into several
logical channels. Details of these protocols are described in separate documents.

15. [RFC 6402]

Certificate Management over CMS (CMC), http://www.ietf.org/rfc/rfc5272.txt.
Formerly published as RFC 5272, RFC 6402 is a protocol standard for using
certificate management services, such as enrollment, rekey, and revocation using
PKCS #10 or the Cryptographic Message Syntax (CMS).

16. [RFC 5273]

Certificate Management over CMS (CMC): Transport Protocols,
http://www.ietf.org/rfc/rfc5273.txt.
RFC 5273 defines a number of transport mechanisms that are used to move CMC
(Certificate Management over CMS (Cryptographic Message Syntax)) messages. The
transport mechanisms described are: HTTP, file, mail, and TCP.

17. [RFC 5274]

Certificate Management Messages over CMS (CMC): Compliance Requirements,
http://www.ietf.org/rfc/rfc5274.txt.
RFC 5274 provides a set of compliance statements about the CMC (Certificate
Management over CMS) enrollment protocol.

18. [RFC 5280]

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile, http://www.ietf.org/rfc/rfc5280.txt.
RFC 5280 defines the formats for X.509 public key certificates and the corresponding
CRLs. This RFC also defines the certificates, the certification paths, and the CRL
processing rules.

19. [RFC 5295]

Specification for the Derivation of Root Keys from an Extended Master Session Key
(EMSK), http://www.ietf.org/rfc/rfc5295.txt.

http://www.ietf.org/rfc/rfc5272.txt
http://www.ietf.org/rfc/rfc5273.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5295.txt

SP 800-130 August 2013

95

The Extensible Authentication Protocol (EAP) defines the Extended Master Session
Key (EMSK) generation process. RFC 5295 defines how EMSK is used to derive root
keys. Root keys are master keys that can be used for multiple security services, such
as authentication, integrity, and encryption.

20. [RFC 5480]

Elliptic Curve Cryptography Subject Public Key Information,
http://www.ietf.org/rfc/rfc5480.txt.
RFC 5480 defines the format and structure of elliptic curve public keys in X509
certificates.

21. [RFC 5652]
Cryptographic Message Syntax (CMS),
http://www.ietf.org/rfc/rfc5652.txt.
RFC 5652 describes the Cryptographic Message Syntax (CMS) format. This syntax is
used to digitally sign, digest, authenticate, or encrypt arbitrary message content.

22. [RFC 5914]
Trust Anchor Format, http://www.ietf.org/rfc/rfc5914.txt.
RFC 5914 describes a structure for representing trust anchor information. A trust
anchor is an authoritative entity that is represented by a public key and associated
data. The public key is used to verify digital signatures, and the associated data is
used to constrain the types of information or actions for which the trust anchor is
authoritative. The structure defined in this document is intended to satisfy format-
related requirements defined in the Trust Anchor Management Requirements.

23. [RFC 5934]

Trust Anchor Management Protocol (TAMP), http://www.ietf.org/rfc/rfc5934.txt.
RFC 5934 defines a security protocol to securely update the trust anchor stores held
by devices, equipment and applications.

23. [RFC 6024]
Trust Anchor Management Requirements, http://www.ietf.org/rfc/rfc6024.txt.
RFC 6024 describes some of the problems associated with the lack of a standard trust
anchor management mechanism and defines requirements for data formats and push-
based protocols designed to address these problems.

24. [SP 800-37]
SP 800-37-rev1: Guide for Applying the Risk Management Framework to Federal
Information Systems – A Security Lifecycle Approach, February 2010
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-37-rev1 continues the evolution to a unified framework by transforming the
traditional Certification and Accreditation process into the six-step Risk Management
Framework (RMF). The revised process emphasizes: (i) building information security
capabilities into Federal information systems through the application of state-of-the-

http://www.ietf.org/rfc/rfc5480.txt
http://www.ietf.org/rfc/rfc5272.txt
http://www.ietf.org/rfc/rfc5914.txt
http://www.ietf.org/rfc/rfc5934.txt
http://www.ietf.org/rfc/rfc6024.txt
http://www.csrc.nist.gov/publications/PubsSPs.html

SP 800-130 August 2013

96

practice management, operational, and technical security controls; (ii) maintaining an
awareness of the security state of information systems on an ongoing basis through
enhanced monitoring processes; and (iii) providing essential information to senior
leaders to facilitate credible decisions regarding the acceptance of risk to
organizational operations and assets, individuals, other organizations, and the Nation
arising from the operation and use of information systems.

25. [SP 800-38A]
SP 800-38A: Recommendation for Block Cipher Modes of Operation - Methods and
Techniques, December 2001, http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-38A defines five confidentiality modes of operation for use with an
underlying symmetric key block cipher algorithm: Electronic Codebook (ECB),
Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB), and
Counter (CTR). SP 800-38A is used with an approved block cipher algorithm.
Compliance with this Recommendation is validated under the NIST Cryptographic
Algorithm Validation Program (CAVP).

26. [SP 800-38B]
SP 800-38B: Recommendation for Block Cipher Modes of Operation - the CMAC
mode for Authentication, May 2005,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-38B specifies a message authentication code (MAC) algorithm based on a
symmetric key block cipher algorithm. This block cipher-based MAC algorithm,
called CMAC, may be used to provide assurance of the authenticity and, hence, the
integrity of binary data. Compliance with this Recommendation is validated under the
NIST Cryptographic Algorithm Validation Program (CAVP).

27. [SP 800-38C]
SP 800-38C Recommendation for Block Cipher Modes of Operation: the CCM Mode
for Authentication and Confidentiality, May 2004,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-38C defines a mode of operation, called CCM, for a symmetric key block
cipher algorithm. CCM may be used to provide assurance of the confidentiality and
the authenticity of computer data by combining the techniques of the Counter (CTR)
mode and the Cipher Block Chaining-Message Authentication Code (CBC-MAC)
algorithm23. Compliance with this Recommendation is validated under the NIST
Cryptographic Algorithm Validation Program (CAVP).

28. [SP 800-38D]

SP 800-38D: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC, November 2007,
http://www.csrc.nist.gov/publications/PubsSPs.html.

23 CBC-MAC is not currently an approved mode of operation except as a component of
the CCM mode.

http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html

SP 800-130 August 2013

97

SP 800-38D specifies the Galois/Counter Mode (GCM) algorithm for authenticated
encryption with associated data, and its specialization, GMAC, for generating a
message authentication code (MAC) on data that is not encrypted. GCM and GMAC
are modes of operation for an underlying, approved symmetric key block cipher
algorithm. Compliance with this Recommendation is validated under the NIST
Cryptographic Algorithm Validation Program (CAVP).

29. [SP 800-38E]

SP 800-38E: DRAFT Recommendation for Block Cipher Modes of Operation: The
XTS-AES Mode for Confidentiality on Block-Oriented Storage Devices, January 2010,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-38E approves the XTS-AES mode of the AES algorithm by reference to IEEE
Standard 1619-2007, subject to one additional requirement, as an option for
protecting the confidentiality of data on block-oriented storage devices. The mode
does not provide authentication of the data or its source.

30. [SP 800-38F]

SP 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping, December 2012, http://csrc.nist.gov/publications/PubsSPs.html.
SP 800-38F describes cryptographic methods that are approved for “key wrapping,”
i.e., the protection of the confidentiality and integrity of cryptographic keys.

31. [SP 800-53]
SP 800-53: Recommended Security Controls for Federal Information Systems,
August, 2009, http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-53 provides guidelines for selecting and specifying security controls for
information systems supporting the executive agencies of the Federal government.
The guidelines apply to all components

of an information system that process, store,

or transmit Federal information. The guidelines have been developed to help achieve
more secure information systems within the Federal government by:

a) Facilitating a more consistent, comparable, and repeatable approach for
selecting and specifying security controls for information systems;

b) Providing a recommendation for minimum security controls for information
systems categorized in accordance with Federal Information Processing
Standards (FIPS) 199, Standards for Security Categorization of Federal
Information and Information Systems;

c) Promoting a dynamic, extensible catalog of security controls for information
systems to meet the demands of changing requirements and technologies; and

d) Creating a foundation for the development of assessment methods and
procedures for determining security control effectiveness.

http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html

SP 800-130 August 2013

98

32. [SP 800-53A]
SP 800-53A: Guide for Assessing Security Controls in Federal Information Systems –
Building Effective Security Assessment Plans, June 2010,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-53A is intended to facilitate security control assessments conducted within an
effective risk management framework. The assessment results provide organizational
officials:

a) Evidence about the effectiveness of security controls in organizational
information systems;

b) An indication of the quality of the risk management processes employed
within the organization; and

c) Information about the strengths and weaknesses of information systems that
are supporting critical Federal missions and applications in a global
environment of sophisticated threats.

33. [SP 800-56A]

SP 800-56A: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography (Revised), May 2013,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-56A specifies key establishment schemes using discrete logarithm
cryptography, based on standards developed by the Accredited Standards Committee
(ASC) X9, Inc.: ANS X9.42 (Agreement of Symmetric Keys Using Discrete
Logarithm Cryptography) and ANS X9.63 (Key Agreement and Key Transport Using
Elliptic Curve Cryptography). Compliance with this Standard is validated under the
NIST Cryptographic Algorithm Validation Program (CAVP).

34. [SP 800-56B]

SP 800-56B: Recommendation for Pair-Wise Key Establishment Using Integer
Factorization Cryptography, August 2009,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-56B specifies key establishment schemes using integer factorization
cryptography, based on ANS X9.44, Key Establishment using Integer Factorization
Cryptography, which was developed by the Accredited Standards Committee (ASC)
X9, Inc. Compliance with this Standard is validated under the NIST Cryptographic
Algorithm Validation Program (CAVP).

35. [SP 800-56C]

SP 800-56C: Recommendation for Key Derivation through Extraction-then-
Expansion, November 2011, http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-56C specifies a two-step derivation procedure that employs an extraction-
then-expansion technique for deriving keying material from a shared secret generated
during a establishment scheme specified in [SP 800-56A] or [SP 800-56B]. Several

http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html

SP 800-130 August 2013

99

application-specific derivation functions that use approved variants of this
extraction-then-expansion procedure are described in NIST SP 800-135.

36. [SP 800-57-part1]
SP 800-57-part 1: Recommendation for Key Management – Part 1: General (Revised,
July 2012,
 http://www.csrc.nist.gov/publications/PubsSPs.html
SP 800-57 – Part 1 focuses on issues involving the management of cryptographic
keys: their generation, use, and eventual destruction. Related topics, such as
algorithm selection and appropriate key size, cryptographic policy, and cryptographic
module selection, are also included.

37. [SP 800-57-part3]
SP 800-57-part 3: Recommendation for Key Management – Part 3: Application
Specific Key Management Guidance, December 2009,
 http://www.csrc.nist.gov/publications/PubsSPs.html
SP 800-57-part 3 is intended primarily to help system administrators and system
installers adequately secure applications in common use. The guide also provides
information for end users regarding application options left under their control in
normal use of the application. Recommendations are given for a selected set of
applications.

38. [SP 800-67]
SP 800-67: Recommendation for the Triple Data Encryption Algorithm (TDEA) Block
Cipher, January 2012, http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-67 specifies the Triple Data Encryption Algorithm (TDEA), including its
primary component cryptographic engine, the Data Encryption Algorithm (DEA).
Compliance with this Recommendation is validated under the NIST Cryptographic
Algorithm Validation Program (CAVP).

39. [SP 800-89]

SP 800-89: Recommendation for Obtaining Assurances for Digital Signature
Applications, November 2006,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-89 specifies methods for obtaining the assurances necessary for valid digital
signatures: assurance of domain parameter validity, assurance of public key validity,
assurance that the key pair owner actually possesses the private key, and assurance of
the identity of the key pair owner.

40. [SP 800-90A]

SP 800-90A: Recommendation for Random Number Generation Using Deterministic
Random Bit Generators (Revised), January 2012,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-90A specifies mechanisms for the generation of random bits using
deterministic methods. The random bits may then be used directly or converted to

http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html

SP 800-130 August 2013

100

random numbers when required by applications using cryptography. The methods
provided are based on hash functions, block cipher algorithms or number theoretic
problems. Compliance with this Recommendation is validated under the NIST
Cryptographic Algorithm Validation Program (CAVP).

80. [SP 800-102]
SP 800-102: Recommendation for Digital Signature Timeliness, September 2009,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-102 describes techniques for providing evidence of the time that a message
was signed with a digital signature.

81. [SP 800-108]
SP 800-108: Recommendation for Key Derivation Using Pseudorandom Functions.
October 2009, http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-108 specifies several families of key derivation functions that use
pseudorandom functions. These key derivation functions can be used to derive
additional keys from a key that has been established through an automated key
establishment scheme (e.g. as defined in [SP 800-56A] and [SP 800-56B]]), or from a
pre-shared key (e.g., a manually distributed key).

82. [SP 800-115]
SP 800-115: Technical Guide to Information Security Testing and Assessment,
September 2008, http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-115 is a guide to the basic technical aspects of conducting information
security assessments. The document presents technical testing and examination
methods and techniques that an organization might use as part of an assessment, and
offers insights to assessors on their execution and the potential impact they may have
on systems and networks. For an assessment to be successful and have a positive
impact on the security posture of a system (and ultimately upon the entire
organization), elements beyond the execution of testing and examination must
support the technical process. Suggestions for these activities—including a robust
planning process, root cause analysis, and tailored reporting—are also presented in
this guide.

83. [SP 800-126]
SP 800-126-r2: The Technical Specification for the Security Content Automation
Protocol (SCAP): SCAP Version 1.2, September 2011,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-126-r2 defines the technical composition of SCAP Version 1.2 in terms of its
component specifications, their interrelationships and interoperation, and the
requirements for SCAP content. The technical specification for SCAP in this
publication describes the requirements and conventions that are to be employed to

http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html

SP 800-130 August 2013

101

ensure the consistent and accurate exchange of SCAP-conformant content and the
ability to reliably use the content with SCAP-conformant products.

SCAP is a suite of specifications that standardize the format and nomenclature by
which software flaw and security configuration information is communicated, both to
machines and to humans. SCAP is a multi-purpose framework of specifications that
support automated configuration, vulnerability and patch checking, technical control
compliance activities, and security measurement. Goals for the development of SCAP
include standardizing system security management, promoting interoperability of
security products, and fostering the use of standard expressions of security content.

84. [SP 800-131A]
SP 800-131A: Transitions: Recommendation for Transitioning the Use of
Cryptographic Algorithms and Key Lengths, January 2011,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-131A is intended to provide more detail about the transitions associated with
the use of cryptography by Federal government agencies for the protection of
sensitive, but unclassified information. The Recommendation addresses the use of
algorithms and key lengths. (See also Implementation Guidance for FIPS 140-2 and
the CMVP Program, G14 and G15, June 2012).

85. [SP 800-132]
SP 800-132: Recommendation for Password-Based Key Derivation, Part 1: Storage
Applications, December 2010,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-132 specifies a family of password-based key derivation functions (PBKDFs)
for deriving cryptographic keys from passwords or passphrases for the protection of
electronically stored data or for the protection of data protection keys.

86. [SP 800-135]

SP 800-135 Revision 1: Recommendation for Existing Application-Specific Key
Derivation Functions, December 2011,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-135 specifies security requirements for existing application-specific key
derivation functions in several current security standards.

87. [SP 800-147]
SP 800-147: BIOS Protection Guidelines, April 2011,
http://www.csrc.nist.gov/publications/PubsSPs.html.
SP 800-147 provides guidelines for preventing the unauthorized modification of
Basic Input/Output System (BIOS) firmware on PC client systems. Unauthorized
modification of BIOS firmware by malicious software constitutes a significant threat
because of the BIOS’s unique and privileged position within the PC architecture. A
malicious BIOS modification could be part of a sophisticated, targeted attack on an

http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html
http://www.csrc.nist.gov/publications/PubsSPs.html

SP 800-130 August 2013

102

organization —either a permanent denial of service (if the BIOS is corrupted) or a
persistent malware presence (if the BIOS is implanted with malware).

88. [TLS]

Various Transport Layer Security Related RFCs under
http://www.ietf.org/dyn/wg/charter/tls-charter.html.
These TLS RFCs describe how authentication, encryption, and integrity security
services are provided for the HTTP packets. The RFCs cover the format of the
security services payload for the packets, cipher suites for the security services, and
key management techniques for the cryptographic algorithms used to provide the
security services.

89. [X.509]

X.509: Information technology – Open Systems Interconnection – The Directory:
Public-key and attribute certificate frameworks, IEC 9594-8.
This International Standard defines the formats for X.509 public key and attribute
certificates and their associated CRLs, along with the certificate, certification path,
and CRL processing rules.

90. [XML DSIG]
XML Signature Syntax and Processing (Second Edition), W3C Recommendation 10
June 2008, http://www.w3.org/TR/xmldsig-core.
XML DSIG describes the formats for digital signatures on XML documents, and for
ancillary information (e.g., certificates, CRLs, Signer Identifiers, etc.) that can be
used to assist in digital signature verification.

91. [XML ENC]

XML Encryption Syntax and Processing, W3C Recommendation 10 December 2002,
http://www.w3.org/TR/xmlenc-core.
XML ENC describes the formats for encrypted XML documents and for ancillary
information (e.g., certificates, CRLs, Recipient Identifiers, etc.) that can be used to
assist in decryption.

http://www.ietf.org/dyn/wg/charter/tls-charter.html
http://www.w3.org/TR/xmlenc-core/

SP 800-130 August 2013

103

Appendix B: Glossary of Terms

The following glossary contains the primary terms and definitions used in this
Framework. Readers should also review the glossaries contained in [SP 800-57-part1].

Active State The key lifecycle state in which a cryptographic key is available
for use for a set of applications, algorithms, and security entities.

Algorithm Transition The processes and procedures used to replace one cryptographic
algorithm with another.

Anonymity Assurance that public data cannot be associated with the owner in
CKMS supported communications.

Application A computer program designed and operated to achieve a set of
goals or provide a set of services.

Archive
(key and/or metadata)

To place an electronic cryptographic key and/or metadata into a
long-term storage medium that will be maintained even if the
storage technology changes. Also, the location where archived
keys and/or metadata are stored.

Associated Metadata
(also Metadata)

In the Framework, parameters used to describe properties
associated with a cryptographic key that are explicitly recorded,
managed, and protected by the CKMS.

Association Function
In this document, a function that protects a key and metadata
from unauthorized modification and disclosure and authenticates
the source of the metadata.

Audit
The procedures performed by an audit administrator to collect,
analyze, and summarize the data required in a report to the
system administrator regarding the security of the system.

Authoritative Time Source A network entity that is relied upon to provide accurate time.

Backup
(key and/or metadata)

To copy key and/or metadata to another facility so that the key
and/or metadata can be recovered if the original values are lost or
modified during operational usage.

CKMS

Policies, procedures, devices, and components designed to
protect, manage, and distribute cryptographic keys and metadata.
A CKMS performs cryptographic key management functions on
behalf of one or more entities.

CKMS Component
(Component)

Any hardware, software, or firmware that is used to implement a
CKMS.

SP 800-130 August 2013

104

CKMS Device
(Device)

Any combination of CKMS components that serve a specific
purpose (e.g., firewalls, routers, transmission devices,
cryptographic modules, and data storage devices).

CKMS Module A logical entity that performs all required CKMS functions at a
given location.

CKMS Profile

A document that provides an implementation independent
specification of CKMS security requirements for use by a
community of interest (e.g., U.S. Government; banking, health,
and aerospace).

Commercial Off-The-Shelf
(COTS)

Technology and/or a product that is ready-made and available for
sale, lease, or license to the general public.

Compliant CKMS A CKMS whose design specification addresses each requirement
specified within this Framework.

Compromise
The unauthorized disclosure, modification, substitution or use of
sensitive data (e.g., keys, metadata, and other security-related
information).

Compromised State

A key lifecycle state in which a key is designated as
compromised and is not to be used to apply cryptographic
protection to data. Under certain circumstances, the key may be
used to process already-protected data.

Cryptanalyze
To defeat cryptographic mechanisms, and more generally,
information security services by the application of mathematical
techniques.

Cryptographic Binding
(Binding)

The use of one or more cryptographic techniques by a CKMS to
establish a trusted association between a key and selected
metadata elements.

Cryptographic Boundary An explicitly-defined perimeter that establishes the boundary of
all components of a cryptographic module.

Cryptographic Key (Key) A string of bits, integers, or characters that constitute a parameter
to a cryptographic algorithm.

Cryptographic Key
Management System

A system for the management of cryptographic keys and their
metadata (e.g., generation, distribution, storage, backup, archive,
recovery, use, revocation, and destruction).

Cryptographic Module
(Module)

A set of hardware, software and/or firmware that implements
security functions (e.g. cryptographic algorithms and key
establishment) and encompasses the cryptographic boundary.

Cryptographic Officer
An individual authorized to perform cryptographic initialization
and management functions on the cryptographic components and
devices of a CKMS.

SP 800-130 August 2013

105

Cryptography
The use of mathematical techniques to provide security services
such as confidentiality, data integrity, entity authentication, and
data origin authentication.

Cryptoperiod
The time span during which a specific key is authorized for use
or in which the keys for a given system or application may
remain in effect.

Deactivated State
The key lifecycle state in which a key is not to be used to apply
cryptographic protection to data. Under certain circumstances, the
key may be used to process already-protected data.

Designer
The person or organization having the ability, responsibility, and
authority for specifying the devices comprising a new system and
how the devices will be structured, coordinated, and operated.

Destroyed State A key lifecycle state in which a key cannot be recovered or used.

Destroyed Compromised
State

A key lifecycle state in which a key cannot be recovered nor used
and is marked as compromised.

Security Domain
(Domain)

A logical entity that contains a group of elements (e.g., people,
organizations, information systems) that have common goals and
requirements.

Entity
An individual (person), organization, device or process. An entity
has an identifier to which it may be associated. (Sometimes called
a party.)

Equivalent Security
Domain Policies

Two domain security policies are equivalent if they permit the
exchange of cryptographic keys from one security domain to
another in a manner whereby the key is provided comparable
protection in each domain.

Extensibility A measure of the ease of increasing the capability of a system.

Firewall
The process integrated with a computer operating system that
detects and prevents undesirable applications and remote users
from accessing or performing operations on a secure computer.

Formal Language

A language whose syntax (i.e., rules for creating correct
sentences with proper structure) is defined such that the rules are
unambiguous and all syntactically correct sentences of the
language can be recognized as being correct by an automaton
(e.g., a computer running a syntax-analysis application program).

Framework A description of the policies, procedures, components, and
devices that are used to create a CKMS.

Garbled
The modification of data (e.g., a cryptographic key) in which one
or more of its elements (e.g., bit, digit, character) has been
changed or destroyed.

SP 800-130 August 2013

106

Generate Key The key and metadata management function used to compute or
create a cryptographic key.

Hardening
A process to eliminate a means of attack by patching
vulnerabilities and turning off nonessential services. Hardening a
computer involves several steps to form layers of protection.

Hash Value The fixed-length bit string produced by a hash function.

Identifier

A text string used to indicate an entity (e.g., one that is
performing a key management function) and by the CKMS
access control system to select a specific key from a collection of
keys.

Interoperability A measure of the ability of one set of entities to physically
connect to and logically communicate with another set of entities.

Key See cryptographic key.

Key Agreement

A key establishment procedure where the resultant keying
material is a function of information contributed by two or more
participants, so that no entity can predetermine the resulting value
of the keying material independently of any other entity’s
contribution.

Key Confirmation

A procedure to provide assurance to one entity (the key
confirmation recipient) that another entity (the key confirmation
provider) actually possesses the correct secret keying material
and/or shared secret.

Key Distribution
The transport of a key and other keying material from an entity
that either owns or generates the key to another entity that is
intended to use the key. (Sometimes called key transport.)

Key Entry The process by which a key (and perhaps its metadata) is entered
into a cryptographic module in preparation for active use.

Key Establishment

The process by which a key is securely shared between two or
more entities, either by transporting a key from one entity to
another (key transport) or deriving a key from information shared
by the entities (key agreement).

Key Label

A key label is a text string that provides a human-readable and
perhaps machine-readable set of descriptors for the key.
Hypothetical examples of key labels include: “Root CA Private
Key 2009-29”; “Maintenance Secret Key 2005.”

Key Lifecycle State

One of the set of finite states that describes the accepted use of a
cryptographic key at a given point in its lifetime, including: Pre-
Activation; Active; Suspended; Deactivated; Revoked;
Compromised; Destroyed; Destroyed Compromised.

SP 800-130 August 2013

107

Key Output
The process by which a key (and perhaps its metadata) are
extracted from a cryptographic module (usually for external
storage).

Key Owner An entity (e.g., person, group, organization, device, or module)
authorized to use a cryptographic key or key pair.

Key Split
A parameter that, when properly combined with one or more
other key splits, forms a cryptographic key.

Key State Transition The process of moving from one key lifecycle state to another.

Key Transport

A key establishment procedure whereby one entity (the sender)
selects and distributes the keying material to another entity (the
receiver). Typically, key transport involves the use of
cryptography to protect the keying material, but in some
applications a trusted courier may be used instead. (Sometimes
called key distribution.)

Key Update The process used to replace a previously active key with a new
key that is related to the old key.

Key Wrapping
A method of encrypting keys (along with associated integrity
information) that provides both confidentiality and integrity
protection using a symmetric key.

Keying Material Key and/or metadata.

Least Privilege The principle that each entity has access only to the information
and resources necessary for legitimate use.

Malware
Software designed and operated by an adversary to violate the
security of a computer (includes spyware, virus programs, root
kits, and Trojan horses).

Metadata
(also Associated Metadata)

In the Framework, parameters used to describe properties
associated with a cryptographic key that are explicitly recorded,
managed, and protected by the CKMS.

Metadata Element One unit of metadata that is associated with a key and explicitly
recorded and managed by the CKMS.

Mode of Operation

A set of rules for operating on data with a cryptographic
algorithm and a key; often includes feeding all or part of the
output of the algorithm back into the input of the next iteration of
the algorithm, either with or without additional data being
processed. Examples are: Cipher Feedback, Output Feedback,
and Cipher Block Chaining.

SP 800-130 August 2013

108

Parameters
Specific variables and their values that are used with a
cryptographic algorithm to compute outputs useful to achieve
specific security goals.

Party See entity

Pre-Activation State A key lifecycle state in which a key has not yet been authorized
for use.

Privacy Assurance that the confidentiality of, and access to, certain
information about an entity is protected.

Profile

A specification of the policies, procedures, components and
devices that are used to create a CKMS that conforms to the
standards of a customer sector (e.g., Federal, Private, or
International).

Qubit In quantum computing, a unit of quantum information − the
quantum analogue of the classical bit.

Recover
(General) To get back; regain.

Recover
(key and/or metadata)

To obtain or reconstruct a key and/or metadata from backup or
archive storage.

Registration

The collection of procedures performed by a registration agent
for verifying the identity and authorizations of an entity and
establishing a trusted association of the entity’s key(s) to the
entity’s identifier and possibly other metadata.

Rekey The process used to replace a previously active key with a new
key that was created completely independently of the old key.

Renewal The process used to extend the validity period of a public key so
that it can be used for an additional time period.

Revoked State
The key lifecycle state in which a previously active cryptographic
key is no longer to be used to apply cryptographic protection to
data.

Role
The set of acceptable functions, services, and tasks that a person
or organization is authorized to perform within an environment or
context.

Rootkit

Malware that enables unauthorized privileged access to a
computer while actively hiding its presence from administrators
by subverting standard operating-system functionality or other
applications.

SP 800-130 August 2013

109

Router

A physical or logical entity that receives and transmits data
packets or establishes logical connections among a diverse set of
communicating entities (usually supports both hardwired and
wireless communication devices simultaneously).

Scalability
The ability of a system to handle a growing amount of work in a
capable manner or its ability to be enlarged to accommodate that
growth.

Scheme

An unambiguous specification of a set of transformations that is
capable of providing a (cryptographic) service when properly
implemented and maintained. A scheme is a higher-level
construct than a primitive and a lower level construct than a
protocol.

Sector
A group of organizations (e.g., Federal agencies, private
organizations, international consortia) that have common goals,
standards, and requirements for a product, system, or service.

Security Domain
A collection of entities, including their CKMS, in which each
CKMS operates under the same security policy − known as the
Domain Security Policy.

Security Policy

The rules and requirements established by an organization that
governs the acceptable use of its information and services, and
the level and means for protecting the confidentiality, integrity,
and availability of its information.

Security Strength
A number associated with the amount of work (that is, the base 2
logarithm of the minimum number of operations) that is required
to cryptanalyze a cryptographic algorithm or system.

Semantics The intended meaning of acceptable sentences of a language.

Standard Something established by authority, custom, or general consent
as a model or example.

Store
(key and/or metadata)

To move a key and/or metadata into a medium from which the
key and/or metadata may be recovered.

Suspended State
The key lifecycle state used to temporarily remove a previously
active key from that status, but making provisions for later
returning the key to active status, if appropriate.

Syntax The rules for constructing acceptable sentences of a language.

Trust
A characteristic of an entity that indicates its ability to perform
certain functions or services correctly, fairly, and impartially,
along with assurance that the entity and its identifier are genuine.

SP 800-130 August 2013

110

Trust Anchor
One or more trusted public keys that exist at the base of a tree of
trust or as the strongest link in a chain of trust and upon which a
Public Key Infrastructure is constructed in a CKMS.

Trust Anchor Store The location where trust anchor information is stored.

Trusted Association

The linking of a key with selected metadata elements so as to
provide assurance that the key and its metadata are properly
associated, originate from a particular source, have not been
modified, and have been protected from unauthorized disclosure.

Unlinkability
Assurance that two or more related events in an information
processing system cannot be associated with each other in
CKMS-supported communications.

Unobservability
Assurance that an observer is unable to identify or make
inferences about the parties involved in a transaction in CKMS-
supported communications.

User
An individual authorized by an organization and its policies to
use an information system, one or more of its applications, its
security procedures and services, and a supporting CKMS.

Validate
To test cryptographic parameters or modules and confirm the test
results to obtain assurance that the tested implementation is
appropriate for use.

Validity Period The lifespan of a public key certificate.

SP 800-130 August 2013

111

Appendix C: Acronyms

The following list contains acronyms used in the Framework.

ACS Access Control System
AES Advanced Encryption Standard
ANS American National Standard
CBC Cipher Block Chaining
CA Certificate (Certification) Authority
CCM Counter with Cipher Block Chaining-Message

Authentication Code
CKL Compromised Key List
CKMS Cryptographic Key Management System(s)
CMS Certificate Management System
COTS Commercial Off-The-Shelf
CRL Certificate Revocation List
DNSSEC Domain Name System Security Extensions
EAP Extensible Authentication Protocol
E-Mail Electronic Mail
EC Elliptic Curve
ECB Electronic Codebook
EFS Electronic File System
FIPS Federal Information Processing Standard
FISMA Federal Information Security Management Act
FR Framework Requirement
fr Framework Response
FT Framework Topic
HMAC Keyed-Hash Message Authentication Code
IDS Intrusion Detection System
IKE Internet Key Exchange
IP Internet Protocol
IPSec Internet Protocol Security
ISO/IEC International Organization for

Standardization/International Electrotechnical
Commission

MAC Message Authentication Code
NIST National Institute of Standards and Technology
NTP Network Time Protocol
OAEP Optimal Asymmetric Encryption Padding
OCSP Online Certificate Status Protocol
OFB Output Feed Back
OID Object Identifier

SP 800-130 August 2013

112

OMB Office of Management and Budget
OTAR Over-The-Air Rekeying
PKCS Public Key Cryptographic Standards
PSS Probabilistic Signature Scheme
RFC Request For Comment
RSA Rivest, Shamir and Adleman (Algorithm)
SCAP Security Content Automation Protocol
S/MIME Secure/Multipurpose Internet Mail Extensions
SP Special Publication
SSH Secure Shell
TDEA Triple Data Encryption Algorithm
TLS Transport Layer Security
VPN Virtual Private Network
XML Extensible Markup Language

	1. Introduction
	1.1 Scope of this Framework
	1.2 Audience
	1.3 Organization

	2. Framework Basics
	2.1 Rationale for Cryptographic Key Management
	2.2 Keys, Metadata, Trusted Associations, and Bindings
	2.3 CKMS Applications
	2.4 Framework Topics and Requirements
	2.5 CKMS Design
	2.6 CKMS Profiles
	2.7 CKMS Framework and Derived Profile
	2.8 Differences between a Framework and a Profile
	2.9 Example of a Distributed CKMS Supporting a Secure E-Mail Application
	2.10 CKMS Framework Components and Devices

	3. Goals
	3.1 Providing Key Management to Networks, Applications, and Users
	3.2 Maximize the Use of COTS in a CKMS
	3.3 Conformance to Standards
	3.4 Ease-of-use
	3.4.1 Accommodate User Ability and Preferences
	3.4.2 Design Principles of the User Interface

	3.5 Performance and Scalability

	4. Security Policies
	4.1 Information Management Policy
	4.2 Information Security Policy
	4.3 CKMS Security Policy
	4.4 Other Related Security Policies
	4.5 Interrelationships among Policies
	4.6 Personal Accountability
	4.7 Anonymity, Unlinkability, and Unobservability
	4.7.1 Anonymity
	4.7.2 Unlinkability
	4.7.3 Unobservability

	4.8 Laws, Rules, and Regulations
	4.9 Security Domains
	4.9.1 Conditions for Data Exchange
	4.9.2 Assurance of Protection
	4.9.3 Equivalence of Domain Security Policies
	4.9.4 Third-Party Sharing
	4.9.5 Multi-level Security Domains
	4.9.6 Upgrading and Downgrading
	4.9.7 Changing Domain Security Policies

	5. Roles and Responsibilities
	6. Cryptographic Keys and Metadata
	6.1 Key Types
	6.2 Key Metadata
	6.2.1 Metadata Elements
	6.2.2 Required Key and Metadata Information

	6.3 Key Lifecycle States and Transitions
	6.4 Key and Metadata Management Functions
	6.4.1 Generate Key
	6.4.2 Register Owner
	6.4.3 Activate Key
	6.4.4 Deactivate Key
	6.4.5 Revoke Key
	6.4.6 Suspend and Re-Activate a Key
	6.4.7 Renew a Public Key
	6.4.8 Key Derivation or Key Update
	6.4.9 Destroy Key and Metadata
	6.4.10 Associate a Key with its Metadata
	6.4.11 Modify Metadata
	6.4.12 Delete Metadata
	6.4.13 List Key Metadata
	6.4.14 Store Operational Key and Metadata
	6.4.15 Backup of a Key and its Metadata
	6.4.16 Archive Key and/or Metadata
	6.4.17 Recover Key and/or Metadata
	6.4.18 Establish Key
	6.4.19 Enter a Key and Associated Metadata into a Cryptographic Module
	6.4.20 Output a Key and Associated Metadata from a Cryptographic Module
	6.4.21 Validate Public Key Domain Parameters
	6.4.22 Validate Public Key
	6.4.23 Validate Public Key Certification Path
	6.4.24 Validate Symmetric Key
	6.4.25 Validate Private Key (or Key Pair)
	6.4.26 Validate the Possession of a Private Key
	6.4.27 Perform a Cryptographic Function using the Key
	6.4.28 Manage the Trust Anchor Store

	6.5 Cryptographic Key and/or Metadata Security: In Storage
	6.6 Cryptographic Key and Metadata Security: During Key Establishment
	6.6.1 Key Transport
	6.6.2 Key Agreement
	6.6.3 Key Confirmation
	6.6.4 Key Establishment Protocols

	6.7 Restricting Access to Key and Metadata Management Functions
	6.7.1 The Access Control System (ACS)
	6.7.2 Restricting Cryptographic-Module Entry and Output of Plaintext Keys
	6.7.3 Controlling Human Input
	6.7.4 Multiparty Control
	6.7.5 Key Splitting

	6.8 Compromise Recovery
	6.8.1 Key Compromise
	6.8.2 Metadata Compromise
	6.8.3 Key and Metadata Revocation
	6.8.4 Cryptographic Module Compromise
	6.8.5 Computer System Compromise Recovery
	6.8.6 Network Security Controls and Compromise Recovery
	6.8.7 Personnel Security Compromise Recovery
	6.8.8 Physical Security Compromise Recovery

	7. Interoperability and Transitioning
	8. Security Controls
	8.1 Physical Security Controls
	8.2 Operating System and Device Security Controls
	8.2.1 Operating System Security
	8.2.2 Individual CKMS Device Security
	8.2.3 Malware Protection
	8.2.4 Auditing and Remote Monitoring

	8.3 Network Security Control Mechanisms
	8.4 Cryptographic Module Controls

	9. Testing and System Assurances
	9.1 Vendor Testing
	9.2 Third-Party Testing
	9.3 Interoperability Testing
	9.4 Self-Testing
	9.5 Scalability Testing
	9.6 Functional Testing and Security Testing
	9.7 Environmental Testing
	9.8 Development, Delivery, and Maintenance Assurances
	9.8.1 Configuration Management
	9.8.2 Secure Delivery
	9.8.3 Development and Maintenance Environmental Security
	9.8.4 Flaw Remediation Capabilities

	10. Disaster Recovery
	10.1 Facility Damage
	10.2 Utility Service Outage
	10.3 Communication and Computation Outage
	10.4 System Hardware Failure
	10.5 System Software Failure
	10.6 Cryptographic Module Failure
	10.7 Corruption of Keys and Metadata

	11. Security Assessment
	11.1 Full Security Assessment
	11.1.1 Review of Third-Party Validations
	11.1.2 Architectural Review of System Design
	11.1.3 Functional and Security Testing
	11.1.4 Penetration Testing

	11.2 Periodic Security Review
	11.3 Incremental Security Assessment
	11.4 Security Maintenance

	12. Technological Challenges
	Appendix A: References
	Appendix B: Glossary of Terms
	Appendix C: Acronyms

